設函數(shù)在區(qū)間上可導,若,總有,則稱為區(qū)間上的函數(shù).在下列四個函數(shù),,中,在區(qū)間上為函數(shù)的個數(shù)是

A.               B.               C.               D.

 

【答案】

A

【解析】

試題分析:根據(jù)題意,由于設函數(shù)在區(qū)間上可導,若,總有,則稱為區(qū)間上的函數(shù).那么在,中,在區(qū)間上為函數(shù),即說明函數(shù)式凹函數(shù)即可,那么可知在的個數(shù)是只有二次函數(shù)滿足題意,故答案為A.

考點:新定義

點評:主要是考查了函數(shù)的性質的運用,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x2+x,(x≤1)
lnx,(x>1)

(Ⅰ)求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)設P(x1,y1),Q(x2,y2)是函數(shù)f(x)圖象上的兩點且x1<1,x2>1,若直線PQ是函數(shù)f(x)圖象的切線且P、Q都是切點,求證:3<x2<4;(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986)
(Ⅲ)設函數(shù)g(x)的定義域為D,區(qū)間I⊆D,若函數(shù)g(x)在I上可導,對任意的x0∈I,g(x)的圖象在(x0,g(x0))處的切線為l,函數(shù)g(x)圖象上所有的點都在直線l上方或直線l上,則稱區(qū)間I為函數(shù)g(x)的“下線區(qū)間”.類比上面的定義,請你寫出函數(shù)“上線區(qū)間”的定義,并根據(jù)你所給的定義,判斷區(qū)間(-∞,
3
8
)是否是函數(shù)f(x)的“上線區(qū)間”(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年遼寧卷)(12分)

函數(shù)在區(qū)間內可導,導函數(shù)是減函數(shù),且.設,是曲線在點處的切線方程,并設函數(shù)

         (Ⅰ)用、、表示m;

         (Ⅱ)證明:當,

(Ⅲ)若關于x的不等式上恒成立,其中a、b為實數(shù),求b的取值范圍及a與b所滿足的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=數(shù)學公式,
(Ⅰ)求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)設P(x1,y1),Q(x2,y2)是函數(shù)f(x)圖象上的兩點且x1<1,x2>1,若直線PQ是函數(shù)f(x)圖象的切線且P、Q都是切點,求證:3<x2<4;(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986)
(Ⅲ)設函數(shù)g(x)的定義域為D,區(qū)間I⊆D,若函數(shù)g(x)在I上可導,對任意的x0∈I,g(x)的圖象在(x0,g(x0))處的切線為l,函數(shù)g(x)圖象上所有的點都在直線l上方或直線l上,則稱區(qū)間I為函數(shù)g(x)的“下線區(qū)間”.類比上面的定義,請你寫出函數(shù)“上線區(qū)間”的定義,并根據(jù)你所給的定義,判斷區(qū)間(-∞,數(shù)學公式)是否是函數(shù)f(x)的“上線區(qū)間”(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省漳州一中高三質量檢查數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=,
(Ⅰ)求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)設P(x1,y1),Q(x2,y2)是函數(shù)f(x)圖象上的兩點且x1<1,x2>1,若直線PQ是函數(shù)f(x)圖象的切線且P、Q都是切點,求證:3<x2<4;(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986)
(Ⅲ)設函數(shù)g(x)的定義域為D,區(qū)間I⊆D,若函數(shù)g(x)在I上可導,對任意的x∈I,g(x)的圖象在(x,g(x))處的切線為l,函數(shù)g(x)圖象上所有的點都在直線l上方或直線l上,則稱區(qū)間I為函數(shù)g(x)的“下線區(qū)間”.類比上面的定義,請你寫出函數(shù)“上線區(qū)間”的定義,并根據(jù)你所給的定義,判斷區(qū)間(-∞,)是否是函數(shù)f(x)的“上線區(qū)間”(不必證明).

查看答案和解析>>

同步練習冊答案