直線a,b,c兩兩相交,交點分別為A、B、C,判斷這三條直線是否共面.并說明理由.
考點:平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:設(shè)直線a,b確定一個平面α,由公理二能推導(dǎo)出直線c在平面α內(nèi),從而得到這三條直線a,b,c共面.
解答: 解:如圖,直線a,b,c兩兩相交,交點分別為A、B、C,
設(shè)直線a,b確定一個平面α,
∵點A、B都在直線a上,點B、C都在直線b上,
∴點A、B、C、D都在平面α上,
∵A∈c,C∈c,
∴直線c在平面α內(nèi),
∴這三條直線a,b,c共面.
點評:本題考查三條直線是否共面的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意公理二的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的右焦點為F,過F的直線l與雙曲線C交于不同兩點A、B,且A、B兩點間的距離恰好等于半焦距,若這樣的直線l有且僅有兩條,則雙曲線C的離心率的取值范圍為( 。
A、(1,
1+
7
4
)∪(2,+∞)
B、(1,
17
4
C、(2,+∞)
D、(1,
17
4
)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

做一個容積為256L的方底無蓋水箱,它的高為多少時材料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ABC=
π
2
,AB=BC=
1
2
AD=2,PA=PB=PC=2.
(1)證明:CD⊥平面PAC;
(2)若E為PC的中點,直線PB與平面AED交于點F,求三棱錐P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形的兩條高所在直線方程為:2x-3y+1=0和x+y=0,點A(1,2)是它的一個項點,求:
(1)BC邊所在直線方程.
(2)三個內(nèi)角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,已知a、b、c成等比數(shù)列,且cosB=
3
4

(Ⅰ)求
1
tanA
+
1
tanC
的值;
(Ⅱ)設(shè)
BA
BC
=
3
2
,求a、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,它的一個頂點恰好是拋物線y=
1
4
x2的焦點,已知橢圓C:
x2
a2
+
y2
b2
=1(a≥b≥1)的離心率
3
2
,
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,過右焦點的直線交橢圓A、B兩點且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點),當(dāng)|AB|<
3
時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AA1=3,底面邊長為
3

(1)求異面直線BC1與AA1所成角的大;
(2)求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-1)2,其圖象在點(0,1)處的切線為l.
(1)求y=f(x)、直線l及x=3軸圍成圖形的面積;
(2)求y=f(x)、直線x=2及兩坐標(biāo)軸圍成的圖形繞x軸旋轉(zhuǎn)一周所得幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案