5、設函數(shù)f(x)=2x+lnx-6的零點為m,則m的所在區(qū)間為( 。
分析:根據(jù)函數(shù)零點的判定定理,判斷f(1),f(2),f(3),f(4)的符號,即可求得結論.
解答:解:f(1)=2-6<0,
f(2)=4+ln2-6<0,
f(3)=6+ln3-6>0,
f(4)=8+ln4-6>0,
∴f(2)f(3)<0,
∴m的所在區(qū)間為(2,3).
故選C.
點評:此題是基礎題.考查函數(shù)的零點的判定定理,以及學生的計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

2、設函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定實數(shù)a(a≠
12
),設函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導數(shù)f′(x)的圖象為C1,C1關于直線y=x對稱的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調區(qū)間;
(Ⅱ)對于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數(shù)的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時函數(shù)f(x)的單調性.

查看答案和解析>>

同步練習冊答案