精英家教網 > 高中數學 > 題目詳情

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a3=9.

(1)求數列{an}的通項公式;

(2)證明<1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a3=9.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)證明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a2=5,則
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=( 。
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a3=9
(1)求數列{an}的通項公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整數n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log2(an-1)}(n∈N+)為等差數列,且a1=3,a2=5,則
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•撫州模擬)已知數列{log2(an-1)}(n∈N*)為等差數列,且a1=3,a2=5,則
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步練習冊答案