已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.
分析:(1)設(shè)等差數(shù)列{log2(an-1)}的公差為d.根據(jù)a1和a3的值求得d,進(jìn)而根據(jù)等差數(shù)列的通項(xiàng)公式求得數(shù)列{log2(an-1)}的通項(xiàng)公式,進(jìn)而求得an
(2)把(1)中求得的an代入
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
中,進(jìn)而根據(jù)等比數(shù)列的求和公式求得
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=1-
1
2n
原式得證.
解答:(I)解:設(shè)等差數(shù)列{log2(an-1)}的公差為d.
由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.
所以log2(an-1)=1+(n-1)×1=n,即an=2n+1.
(II)證明:因?yàn)?span id="vndmwbg" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
an+1-an
=
1
2n+1-2n
=
1
2n

所以
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=
1
21
+
1
22
+
1
23
+…+
1
2n
=
1
2 
-
1
2n
×
1
2
1-
1
2
=1-
1
2n
<1,
即得證.
點(diǎn)評(píng):本題主要考查了等差數(shù)列的通項(xiàng)公式.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=( 。
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{log2(an-1)}(n∈N+)為等差數(shù)列,且a1=3,a2=5,則
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•撫州模擬)已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案