(本小題滿(mǎn)分12分)
如圖,棱長(zhǎng)為2的正方體中,E,F滿(mǎn)足.
(Ⅰ)求證:EF//平面AB;
(Ⅱ)求證:EF;
(1)要證明線(xiàn)面平行,一般通過(guò)線(xiàn)線(xiàn)平行來(lái)證明,E、F分別為DD1、BD的中點(diǎn),則可知中位線(xiàn)性質(zhì)則EF∥BD1,進(jìn)而根據(jù)線(xiàn)面平行的判定定理來(lái)證明。
(2)根據(jù)題意,由于AB⊥面BB1C1C 則可知AB⊥B1C且有B1C⊥BC1,AB∥BC1,那么得到B1C⊥面ABC1D,然后
結(jié)合線(xiàn)面垂直的性質(zhì)定理來(lái)證明線(xiàn)線(xiàn)垂直。
解析試題分析:解:
⑴∵
∴E、F分別為DD1、BD的中點(diǎn)…………2分
連結(jié)BD1,則EF∥BD1………………4分
又……………………5分
∴EF∥面ABC1D1……………………6分
⑵正方體ABCD-A1B1C1D1中
∵AB⊥面BB1C1C ∴AB⊥B1C…………8分
又正方形BB1C1C中,B1C⊥BC1,AB∥BC1=B……10分
∴B1C⊥面ABC1D1
∴B1C⊥BD1
∵EF∥BD1
∴EF⊥B1C……………………12分
考點(diǎn):本試題考查了線(xiàn)面的平行和垂直的證明題。
點(diǎn)評(píng):解決空間中線(xiàn)線(xiàn)的平行和垂直的關(guān)鍵是對(duì)于線(xiàn)面的平行性質(zhì)定理和線(xiàn)面的垂直的性質(zhì)定理的熟練的運(yùn)用,同時(shí)要結(jié)合平行的傳遞性來(lái)研究其它 的垂直問(wèn)題。這類(lèi)問(wèn)題的解決一般要轉(zhuǎn)化到一個(gè)平面中來(lái)分析,轉(zhuǎn)化思想是立體幾何的思想體現(xiàn)。中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點(diǎn),平面與平面交于,求證:
(1)平面;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點(diǎn),是上的一動(dòng)點(diǎn),主視圖與俯視圖都為正方形。
⑴求證:;
⑵當(dāng)時(shí),在棱上確定一點(diǎn),使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
如圖1,在等腰梯形中,,,,為上一點(diǎn), ,且.將梯形沿折成直二面角,如圖2所示.
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,點(diǎn)在所在平面內(nèi),且直線(xiàn)與平面所成的角為,試求出點(diǎn)到點(diǎn)的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,⊥平面,=90°,,點(diǎn)在上,點(diǎn)E在BC上的射影為F,且.
(1)求證:;
(2)若二面角的大小為45°,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點(diǎn)。
(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).
(1)求的長(zhǎng); (2)求cos< >的值; (3)求證:A1B⊥C1M.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com