【題目】已知圓的圓心為,且截軸所得的弦長為.

(1)求圓的方程;

(2)設(shè)圓軸正半軸的交點(diǎn)為,過分別作斜率為的兩條直線交圓兩點(diǎn),且,試證明直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

【答案】(1);(2)

【解析】【試題分析】(1)設(shè)圓的半徑為,利用弦長和勾股定理,列方程可求得半徑為,進(jìn)而求得圓的方程.(2)在圓方程中,令求得點(diǎn)坐標(biāo).寫出直線的方程,聯(lián)立直線方程和圓的方程求得點(diǎn)的坐標(biāo),同理求得點(diǎn)的坐標(biāo),求出直線的斜率,從而得到直線的方程,化簡整理后可得定點(diǎn)為.

【試題解析】

(1)設(shè)圓的半徑為,則,所以,

所以圓的方程為.

(2)在中,令,解得,所以

設(shè), ,直線的方程為

,得,

所以,即

所以

所以,因為,所以,

代替,得,所以

故直線的方程為.

整理得

,所以直線恒過一定點(diǎn),定點(diǎn)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的兩頂點(diǎn)為A,B如圖,離心率為 ,過其焦點(diǎn)F(0,1)的直線l與橢圓交于C,D兩點(diǎn),并與x軸交于點(diǎn)P,直線AC與直線BD交于點(diǎn)Q.

(Ⅰ)當(dāng) 時,求直線l的方程;
(Ⅱ)當(dāng)點(diǎn)P異于A,B兩點(diǎn)時,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的函數(shù)上的偶函數(shù),且在區(qū)間上的最大值為10. 設(shè)

求函數(shù)的解析式;

若不等式上恒成立,求實數(shù)的取值范圍;

是否存在實數(shù),使得關(guān)于的方程有四個不相等的實 數(shù)根?如果存在,求出實數(shù)的范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是定義在上的奇函數(shù).

(1)求的值和實數(shù)的值;

(2)判斷函數(shù)上的單調(diào)性,并給出證明;

(3)若求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中, , ,點(diǎn)是線段上的動點(diǎn).

(1)當(dāng)點(diǎn)的中點(diǎn)時,求證: 平面

(2)線段上是否存在點(diǎn),使得平面平面?若存在,試求出的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 中,底面 為平行四邊形, , ,

(Ⅰ)證明:平面 平面 ;
(Ⅱ)若二面角 ,求 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某射擊運(yùn)動員每次擊中目標(biāo)的概率都是0.7.現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2表示沒有擊中目標(biāo),3,4,5,6,7,8,9表示擊中目標(biāo);因為射擊4次,故以每4個隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運(yùn)動員射擊4次至少擊中2次的概率為( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年初的時候,國家政府工作報告明確提出, 年要堅決打好藍(lán)天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少, 月至月的用煤量如下表所示:

月份

用煤量(千噸)

(1)由于某些原因, 中一個數(shù)據(jù)丟失,但根據(jù)月份的數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);

(2)請根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達(dá)到預(yù)期,若誤差均不超過,則認(rèn)為該地區(qū)的改造已經(jīng)達(dá)到預(yù)期,否則認(rèn)為改造未達(dá)預(yù)期,請判斷該地區(qū)的煤改電項目是否達(dá)預(yù)期?

(參考公式:線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)有一長度為2的線段AB與一動點(diǎn)P,若滿足|PA|+|PB|=8,則|PA|的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案