【題目】定義在R上的偶函數(shù)f(x),對任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,則( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過點(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】莫數(shù)學(xué)建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角, .
(Ⅰ)該小組已經(jīng)測得一組的值, , ,請推測的值;
(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號 | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(biāo) (x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產(chǎn)品編號 | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(biāo) (x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣本的一等品中, 隨機(jī)抽取2件產(chǎn)品,
(ⅰ) 用產(chǎn)品編號列出所有可能的結(jié)果;
(ⅱ) 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線:()與橢圓相交于,兩個不同的點,與軸相交于點,記為坐標(biāo)原點.
(1)證明:;
(2)若,求的面積取得最大值時的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)過點的直線,交橢圓于兩點,點在橢圓上,坐標(biāo)原點恰為的重心,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com