精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=2x+1定義在R上.
(1)若f(x)可以表示為一個偶函數g(x)與一個奇函數h(x)之和,設h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(2)若p(t)≥m2-m-1對于x∈[1,2]恒成立,求m的取值范圍;
(3)若方程p(p(t))=0無實根,求m的取值范圍.
【答案】分析:(1)利用f(x)=g(x)+h(x)和f(-x)=g(-x)+h(-x)求出g(x)和h(x)的表達式,再求出p(t)關于t的表達式即可.
(2)先有x∈[1,2]找出t的范圍,在把所求問題轉化為求p(t)在[,]的最小值.讓大于等于m2-m-1即可.
(3)轉化為關于p(t)的一元二次方程,利用判別式的取值,再分別討論即可.
解答:解:(1)假設f(x)=g(x)+h(x)①,其中g(x)偶函數,h(x)為奇函數,
則有f(-x)=g(-x)+h(-x),即f(-x)=g(x)-h(x)②,
由①②解得
∵f(x)定義在R上,∴g(x),h(x)都定義在R上.
,
∴g(x)是偶函數,h(x)是奇函數,∵f(x)=2x+1
,
,則t∈R,
平方得,∴,
∴p(t)=t2+2mt+m2-m+1.
(2)∵t=h(x)關于x∈[1,2]單調遞增,∴
∴p(t)=t2+2mt+m2-m+1≥m2-m-1對于恒成立,
對于恒成立,
,則,
,∴,故上單調遞減,
,∴為m的取值范圍.
(3)由(1)得p(p(t))=[p(t)]2+2mp(t)+m2-m+1,
若p(p(t))=0無實根,即[p(t)]2+2mp(t)+m2-m+1①無實根,
方程①的判別式△=4m2-4(m2-m+1)=4(m-1).
1°當方程①的判別式△<0,即m<1時,方程①無實根.
2°當方程①的判別式△≥0,即m≥1時,
方程①有兩個實根,
②,
只要方程②無實根,故其判別式,
即得③,且④,
∵m≥1,③恒成立,由④解得m<2,∴③④同時成立得1≤m<2.
綜上,m的取值范圍為m<2.
點評:本題是在考查指數函數的基礎上對函數的恒成立問題,函數奇偶性以及一元二次方程根的判斷的綜合考查,是一道綜合性很強的難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案