【題目】某學校為了豐富學生的業(yè)余生活,以班級為單位組織學生開展古詩詞背誦比賽,隨機抽取題目,背誦正確加10分,背誦錯誤減10分,只有“正確”和“錯誤”兩種結(jié)果,其中某班級的正確率為 ,背誦錯誤的概率為 ,現(xiàn)記“該班級完成n首背誦后總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記ξ=|S5|,求ξ的分布列及數(shù)學期望.
【答案】
(1)解:當S6=20時,即背誦6首后,正確個數(shù)為4首,錯誤2首,
若第一首和第二首背誦正確,則其余4首可任意背誦對2首;
若第一首正確,第二首背誦錯誤,第三首背誦正確,則其余3首可任意背誦對2首,
此時的概率為: ;
(2)解:∵ξ=|S5|的取值為10,30,50,
又 ,
∴ ,
,
.
∴ξ的分布列為:
ξ | 10 | 30 | 50 |
∴
【解析】(1)當S6=20時,即背誦6首后,正確個數(shù)為4首,錯誤2首,分類求概率求和;(2)∵ξ=|S5|的取值為10,30,50,又 ,從而分別求概率以列出分布列,再求數(shù)學期望.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】知函數(shù)y= 的定義域為( )
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機變量,則P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個抗震救災醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.
(1)若則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為,則當為多少時,倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a2=3,S5=25.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{ }的前n項和為Tn , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中, ,其前項和滿足.
(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;
(2)設 ,求數(shù)列的前項和;
(3)設為非零整數(shù),是否存在的值,使得對任意恒成立,若存在求出的值,若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com