【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個(gè)抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).
【答案】590
【解析】解:直接法:3名骨科、1名腦外科和1名內(nèi)科醫(yī)生,有C33C41C51=20種,
1名骨科、3名腦外科和1名內(nèi)科醫(yī)生,有C31C43C51=60種,
1名骨科、1名腦外科和3名內(nèi)科醫(yī)生,有C31C41C53=120種,
2名骨科、2名腦外科和1名內(nèi)科醫(yī)生,有C32C42C51=90種,
1名骨科、2名腦外科和2名內(nèi)科醫(yī)生,有C31C42C52=180種,
2名骨科、1名腦外科和2名內(nèi)科醫(yī)生,有C32C41C52=120種,
共計(jì)20+60+120+90+180+120=590種
間接法:
﹣ ﹣ ﹣ +1=590
所以答案是:590.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)長(zhǎng)度為1的平面向量 和 ,它們的夾角為120°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧 上變動(dòng).若 ,其中x,y∈R,試求x+y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司對(duì)營(yíng)銷人員有如下規(guī)定:
①年銷售額 (萬(wàn)元)在8萬(wàn)元以下,沒有獎(jiǎng)金;
②年銷售額 (萬(wàn)元), 時(shí),獎(jiǎng)金為萬(wàn)元,且, ,且年銷售額越大,獎(jiǎng)金越多;
③年銷售額超過(guò)64萬(wàn)元,按年銷售額的10%發(fā)獎(jiǎng)金.
(1)求獎(jiǎng)金y關(guān)于x的函數(shù)解析式;
(2)若某營(yíng)銷人員爭(zhēng)取獎(jiǎng)金 (萬(wàn)元),則年銷售額 (萬(wàn)元)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為( )
A.y=﹣4sin( )
B.y=4sin( )
C.y=﹣4sin( )
D.y=4sin( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
(1)隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0
(2)殘差平方和越小的模型,擬合的效果越好;
(3)用相關(guān)指數(shù)R2來(lái)刻畫回歸的效果時(shí),R2的值越小,說(shuō)明模型擬合的效果越好;
(4)直線y=bx+a和各點(diǎn)(x1 , y1),(x2 , y2),…,(xn , yn)的偏差 是該坐標(biāo)平面上所有直線與這些點(diǎn)的偏差中最小的直線.
其中真命題的個(gè)數(shù)( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了豐富學(xué)生的業(yè)余生活,以班級(jí)為單位組織學(xué)生開展古詩(shī)詞背誦比賽,隨機(jī)抽取題目,背誦正確加10分,背誦錯(cuò)誤減10分,只有“正確”和“錯(cuò)誤”兩種結(jié)果,其中某班級(jí)的正確率為 ,背誦錯(cuò)誤的概率為 ,現(xiàn)記“該班級(jí)完成n首背誦后總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記ξ=|S5|,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)偶函數(shù)的導(dǎo)函數(shù)是函數(shù),當(dāng)時(shí), ,則使得成立的的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),曲線: (為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)曲線上恰好存在三個(gè)不同的點(diǎn)到直線的距離相等,分別求出這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名選手參加歌手大賽時(shí),5名評(píng)委打的分?jǐn)?shù)用莖葉圖表示(如圖).s1、s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是( )
A.s1>s2
B.s1=s2
C.s1<s2
D.不確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com