(本小題滿分12分)已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若對(duì)任意的,恒成立,試求實(shí)數(shù)的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù),當(dāng)時(shí),函數(shù)在x=2處取得最小值1。
(1)求函數(shù)的解析式;
(2)設(shè)k>0,解關(guān)于x的不等式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知函數(shù).
(Ⅰ) 討論的奇偶性;
(Ⅱ)判斷上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè)當(dāng)時(shí),若對(duì)任意,存在,使恒成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
已知, 若在區(qū)間上的最大值為, 最小值為, 令.
(1) 求的函數(shù)表達(dá)式;
(2) 判斷的單調(diào)性, 并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)已知函數(shù)是奇函數(shù)
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)試判斷函數(shù)在(,)上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)設(shè)函數(shù)y=x+ax+bx+c的圖像,如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為–4,

(1)求a、b、c的值;       
(2)求函數(shù)的遞減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù);
(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;
(2)當(dāng)時(shí),試用函數(shù)單調(diào)性的定義證明函數(shù)f(x)在上是減函數(shù)。
(3)設(shè)常數(shù),求函數(shù)的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知,為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/1/18qez2.gif" style="vertical-align:middle;" />,那么稱,為閉函數(shù);
請(qǐng)解答以下問(wèn)題:
(1) 求閉函數(shù)符合條件②的區(qū)間
(2) 判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案