已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為和,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.
(1);(2).
解析試題分析:本題主要考查橢圓的定義和方程、圓的方程、點到直線的距離公式等基礎知識,同時考查解析幾何的基本思想方法和運算求解能力.第一問,利用,得,即,再根據(jù)點在橢圓上,得到和的值,從而得到橢圓方程;第二問,分2種情況進行討論,當直線垂直x軸時,的面積很容易求出,與已知面積不相等,所以舍掉,當直線不垂直x軸時,設出直線方程與橢圓方程聯(lián)立,利用韋達定理,求出,再數(shù)形結合求出圓的半徑,從而求的面積,解出k的值,確定半徑的值,即可求出圓的方程.
試題解析:(1)橢圓C的方程為 ..(4分)
(2)①當直線⊥x軸時,可得,,的面積為3,不符合題意. (6分)
②當直線與x軸不垂直時,設直線的方程為y=k(x+1).代入橢圓方程得:
,顯然>0成立,設A,B,則
,,可得|AB|= ..(9分)
又圓的半徑,∴的面積=,化簡得:,得k=±1,∴r =,圓的方程為 ..(12分)
考點:1.橢圓的定義和方程;2.圓的方程;3.點到直線的距離公.
科目:高中數(shù)學 來源: 題型:解答題
如圖,兩條相交線段、的四個端點都在橢圓上,其中,直線的方程為,直線的方程為.
(1)若,,求的值;
(2)探究:是否存在常數(shù),當變化時,恒有?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線-=1(b∈N*)的左、右兩個焦點為F1、F2,P是雙曲線上的一點,且滿足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)拋物線y2=2px(p>0)的焦點與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過右頂點,與該拋物線交于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設拋物線的焦點為,點,線段的中點在拋物線上.設動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓.
(1)求的值;
(2)試判斷圓與軸的位置關系;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,直線l:y=x+b與拋物線C:x2=4y相切于點A.
(1)求實數(shù)b的值;
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,F1、F2分別是橢圓C:=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
平面直角坐標系xoy中,動點滿足:點P到定點與到y(tǒng)軸的距離之差為.記動點P的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點F的直線交曲線C于A、B兩點,過點A和原點O的直線交直線于點D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,與在第一和第四象限的交點分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點為橢圓上的任一點,若直線、分別與軸交于點和,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com