如果橢圓的長軸長為12,短軸長為8,焦點在x軸上,則橢圓方程為
 
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:依題意,可求得橢圓的半長軸a=6,半短軸b,于是可得橢圓的方程.
解答: 解:由于橢圓的焦點在x軸上,長軸長為12,短軸長為8,
則2a=12,2b=8,
所以a=6,b=4,
故所求橢圓的方程為
x2
36
+
y2
16
=1

故答案為:
x2
36
+
y2
16
=1
點評:本題考查橢圓的簡單性質(zhì),考查理解與運算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{bn}滿足bn+1=
1
2
bn+
1
4
,且b1=
7
2
,Tn為{bn}的前n項和.
(Ⅰ)求證:數(shù)列{bn-
1
2
}是等比數(shù)列,并求出{bn}的通項公式;
(Ⅱ)如果對任意n∈N*,不等式
2Tn+3•22n-1-10
k
≤n2+4n+5恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(2cos2
x
2
+
3
sinx)+b,
(1)當a=1時,求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當x∈[0,π]時,f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,點E為線段AB上異于A,B的點,且EF∥AD,沿EF將面EBCF折起,使平面EBCF⊥平面AEFD,如圖2.
(Ⅰ)求證:AB∥平面DFC;
(Ⅱ)當三棱錐F-ABE體積最大時,求平面ABC與平面AEFD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,AB=2
5
,PA=4,PB=2,PC=4,∠BPC=60°,PA⊥BC,E為AB的中點.
(Ⅰ)求證:PA⊥PC;
(Ⅱ)求二面角P-EC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標系中,A,B分別是直線3ρcosθ-4ρsinθ+7=0和圓ρ=2cosθ上的動點,則A,B兩點之間距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,PB,PC分別切⊙O于B,C,若∠ACE=38°,則∠P=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)y=f(x),y=g(x)都有反函數(shù),并且f(x-1)和g-1(x-2)的函數(shù)圖象關(guān)于直線y=x對稱,若g(5)=1999,那么f(4)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線和曲線C的極坐標方程分別為ρcos(θ-
π
4
)=3
2
和ρ=1,則曲線C上的任一點到直線的距離的最小值為
 

查看答案和解析>>

同步練習冊答案