精英家教網 > 高中數學 > 題目詳情

【題目】已知函數有極值,且在處的切線與直線垂直.

(1)求實數的取值范圍;

(2)是否存在實數,使得函數的極小值為.若存在,求出實數的值;若不存在,請說明理由.

【答案】(1)(2)存在實數,使得函數的極小值為.

【解析】試題分析(1),因為在處的切線與直線垂直,所以,得的關系。因為 函數有極值,故方程有兩個不等實根,其判別式大于0,結合,可求實數的取值范圍;(2)根據導函數的正負,求函數的極小值、極小值點,令極小值等于2,求得極值點,進而求實數的值。

試題解析:(1)∵,∴,

由題意,得,∴.①

有極值,故方程有兩個不等實根,

,∴.②

由①②可得,

故實數的取僮范圍是

(2)存在.

.令, .

,值的變化情況如下表:

+

-

+

極大值

極小值

,∴.

,即,則(舍).

,又,∴,∴,

,∴,∴,∴.

∴存在實數,使得函數的極小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點,FB1C1的中點.

(1)求證:A1F∥平面ECC1

(2)在CD上是否存在一點G,使BG⊥平面ECC1?若存在,請確定點G的位置,并證明你的結論,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在極坐標系中,圓的極坐標方程為: .若以極點為原點,極軸所在直線為軸建立平面直角坐標系.

(Ⅰ)求圓的參數方程;

(Ⅱ)在直角坐標系中,點是圓上動點,試求的最大值,并求出此時點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .

(1)求橢圓的標準方程;

(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有極值,且在處的切線與直線垂直.

(1)求實數的取值范圍;

(2)是否存在實數,使得函數的極小值為.若存在,求出實數的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點,曲線的參考方程為為參數).

(1)求曲線上的點到直線的距離的最大值與最小值;

(2)過點與直線平行的直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線的參數方程為為參數),在以原點為極點, 軸正半軸為極軸的極坐標系中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標方程;

(2)設點,直線與圓相交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓兩點.

(Ⅰ)若, 的面積為4,求拋物線的方程;

(Ⅱ)若三點在同一條直線上,直線平行,且與拋物線只有一個公共點,求直線的方程.

查看答案和解析>>

同步練習冊答案