【題目】橢圓 的離心率為,過其右焦點(diǎn)與長軸垂直的直線與橢圓在第一象限相交于點(diǎn) .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過定點(diǎn).

【答案】(1) . (2)證明見解析.

【解析】試題分析:

(1)由題意可得,則橢圓C的標(biāo)準(zhǔn)方程為.

(2)由題意可得,結(jié)合題意可得圓的方程為,則以線段ST為直徑的圓恒過定點(diǎn).

試題解析:

1)解: ,又,聯(lián)立解得: ,

所以橢圓C的標(biāo)準(zhǔn)方程為.

2)證明:設(shè)直線AP的斜率為k,則直線AP的方程為

聯(lián)立.

,

整理得: ,故,

(分別為直線PA,PB的斜率),

所以,

所以直線PB的方程為: ,

聯(lián)立

所以以ST為直徑的圓的方程為: ,

,解得:

所以以線段ST為直徑的圓恒過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , , .直角梯形可以通過直角梯形以直線為軸旋轉(zhuǎn)得到,且平面平面

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2017/12/20/1842736631291904/1845869604462592/STEM/592e486e595e40bf846fae2bfa16ac59.png]

I)求證:

II)求直線和平面所成角的正弦值.

III)設(shè)的中點(diǎn), , 分別為線段, 上的點(diǎn)(都不與點(diǎn)重合).若直線平面,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最小值;

(2)若,不等式恒成立,求的取值范圍;

(3)若,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面;

(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為實(shí)數(shù),函數(shù),函數(shù)

(1) 當(dāng)時(shí),令,若恒成立,求實(shí)數(shù)的取值范圍;

(2) 當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的圖象全部在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)若,求的極小值;

(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)常數(shù),使得?若存在,求出的值.若不存在,說明理由;

(Ⅲ)設(shè)有兩個(gè)零點(diǎn),且成等差數(shù)列,試探究值的符號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

同步練習(xí)冊答案