已知數(shù)列{an}的通項(xiàng)公式是ann28n5,個(gè)數(shù)列的最小項(xiàng)是________

 

11

【解析】an(n4)211,n4時(shí)an取最小值為-11.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n點(diǎn)Pn(n,Sn)都在函數(shù)f(x)x22x的圖象上,且在點(diǎn)Pn(n,Sn)處的切線的斜率為kn.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)bn2knan,求數(shù)列{bn}的前n項(xiàng)和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm1=-2,Sm0,Sm13,m________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

若數(shù)列{an}滿足an1anan2(n∈N*)則稱數(shù)列{an}凸數(shù)列

(1)設(shè)數(shù)列{an}凸數(shù)列,a11a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng)并求出前6項(xiàng)之和;

(2)凸數(shù)列”{an}求證:an3=-an,nN*;

(3)設(shè)a1a,a2b,若數(shù)列{an}凸數(shù)列,求數(shù)列前2011項(xiàng)和S2011.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

已知a11,ann(an1an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第9課時(shí)練習(xí)卷(解析版) 題型:填空題

若函數(shù)f(x)log2|ax1|(a0),當(dāng)x≠時(shí),f(x)f(1x),a________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第9課時(shí)練習(xí)卷(解析版) 題型:解答題

已知冪函數(shù)yf(x)經(jīng)過(guò)點(diǎn).

(1)試求函數(shù)解析式;

(2)判斷函數(shù)的奇偶性并寫(xiě)出函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第8課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)a0f(x)R上的偶函數(shù).

(1)a的值;

(2)判斷并證明函數(shù)f(x)[0,∞)上的單調(diào)性;

(3)求函數(shù)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

已知二次函數(shù)f(x)ax2bxc圖象的頂點(diǎn)為(1,10)且方程ax2bxc0的兩根的平方和為12,求二次函數(shù)f(x)的表達(dá)式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案