【題目】某商店經(jīng)營的消費品進價每件14元,月銷售量(百件)與銷售價格p(元)的關(guān)系如下圖,每月各種開支2000元.
(1)寫出月銷售量(百件)與銷售價格p(元)的函數(shù)關(guān)系;
(2)寫出月利潤y(元)與銷售價格p(元)的函數(shù)關(guān)系:
(3)當商品價格每件為多少元時,月利潤最大?并求出最大值.
【答案】(1);(2);(3)當商品價格為19.5元時,利潤最大,為4050元.
【解析】
(1)結(jié)合圖像,利用待定系數(shù)法即可求解;
(2)根據(jù)實際情況:利潤銷售收入成本,直接得關(guān)系式;
(3)結(jié)合二次函數(shù)性質(zhì),求最值即可.
(1)結(jié)合圖像可知:
當時,設(shè),
將點,代入上式得,
故;
同理可得,當時,,
故;
(2)結(jié)合(1)可知:
當時,,
即;
當時,,
即;
所以;
(3)由(2)的解析式結(jié)合二次函數(shù)的知識可知:
當時,,函數(shù)取最大值4050,
當時,,函數(shù)取最大值,
綜上可得:當商品價格為19.5元時,利潤最大,為4050元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從某地區(qū)隨機調(diào)查了100個用戶,得到用戶對產(chǎn)品的滿意度評分頻率分布表如下:
組別 | 分組 | 頻數(shù) | 頻率 |
第一組 | 10 | 0.1 | |
第二組 | 20 | 0.2 | |
第三組 | 40 | 0.4 | |
第四組 | 25 | 0.25 | |
第五組 | 5 | 0.05 | |
合計 | 100 | 1 |
(1)根據(jù)上面的頻率分布表,估計該地區(qū)用戶對產(chǎn)品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數(shù)據(jù)計算眾數(shù)、中位數(shù),平均數(shù),根據(jù)樣本估計總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對產(chǎn)品是否滿意?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓恒過點,且與直線: 相切.
(1)求動圓圓心的軌跡的方程;
(2)探究在曲線上,是否存在異于原點的兩點, ,當時,直線恒過定點?若存在,求出該定點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求C;
(2)若,的面積為,求的周長;
(3)若,求周長的取值范圍;
(4)若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為1,E,F分別為棱,AB上的點,下列說法正確的是________.(填上所有正確命題的序號)
①平面
②在平面內(nèi)總存在與平面平行的直線
③在側(cè)面上的正投影是面積為定值的三角形
④當E,F為中點時,平面截該正方體所得的截面圖形是五邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點,G、H為線段DC的三等分點.將長方形ABCD卷成以AD為母線的圓柱W的半個側(cè)面,AB、CD分別為圓柱W上、下底面的直徑.
(Ⅰ)證明:平面ADHF⊥平面BCHF;
(Ⅱ)若P為DC的中點,求三棱錐H—AGP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,,點E為AD的中點,,平面ABCD,且
求證:;
線段PC上是否存在一點F,使二面角的余弦值是?若存在,請找出點F的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝國慶節(jié),某中學(xué)團委組織了“歌頌祖國,愛我中華”知識競賽,從參加考試的學(xué)生中抽出60名,將其成績(成績均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com