【題目】的內(nèi)角AB,C的對邊分別為a,b,c,已知.

1)求C;

2)若,的面積為,求的周長;

3)若,求周長的取值范圍;

4)若,求面積的取值范圍.

【答案】1;(2;(3;(4

【解析】

1)由正弦定理和三角恒等變換求得以及的值;

2)由三角形的面積公式和余弦定理,即可求出的周長;

3)利用正弦定理和三角恒等變換,結(jié)合三角函數(shù)的圖象與性質(zhì),即可求出周長的取值范圍;

4)利用余弦定理和基本不等式求得面積的最大值,即可得出面積的取值范圍.

1中,,

由正弦定理可得:

,

,

,求得.

2)由的面積為,

,

,∴

,利用余弦定理,可得

,∴,

的周長為.

3)∵,,

由正弦定理得,

的周長為,

,∴

,

,∴,

,

,

周長的取值范圍是.

4)由,,

利用余弦定理可得:,

可得,當(dāng)且僅當(dāng)時取等號,

面積的最大值為,

面積的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護環(huán)境,某工廠在政府部門的支持下,進行技術(shù)改進:把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測算,該處理成本y(萬元)與處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:,且每處理一噸二氧化碳可得價值為20萬元的某種化工產(chǎn)品.

(1)當(dāng)時,判斷該技術(shù)改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?

(2)當(dāng)處理量為多少噸時,每噸的平均處理成本最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)計算:

①若是橢圓長軸的兩個端點,,則______

②若是橢圓長軸的兩個端點,,則______;

③若是橢圓長軸的兩個端點,,則______

)觀察①②③,由此可得到:若是橢圓長軸的兩個端點,為橢圓上任意一點,則?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于以為公共焦點的橢圓和雙曲線,設(shè)是它們的一個公共點,分別為它們的離心率.,則的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個小區(qū)所在地,到一條公路的垂直距離分別為,,兩端之間的距離為.

1)某移動公司將在之間找一點,在處建造一個信號塔,使得、的張角與的張角相等,試確定點的位置.

2)環(huán)保部門將在之間找一點,在處建造一個垃圾處理廠,使得、所張角最大,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)yfx)的定義域為R,并且滿足fx+y)=fx)+fy),f)=1,當(dāng)x>0時,fx)>0.

(1)求f(0)的值;

(2)判斷函數(shù)的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)營的消費品進價每件14元,月銷售量(百件)與銷售價格p(元)的關(guān)系如下圖,每月各種開支2000.

(1)寫出月銷售量(百件)與銷售價格p(元)的函數(shù)關(guān)系;

(2)寫出月利潤y(元)與銷售價格p(元)的函數(shù)關(guān)系:

(3)當(dāng)商品價格每件為多少元時,月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù):,計算結(jié)果保留小數(shù)點后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列各組命題,其中的充分必要條件的是(

有兩個不同的零點

;是偶函數(shù);

;

;,,

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案