【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個(gè)零點(diǎn),則m的取值范圍為( )
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)
【答案】D
【解析】解:函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個(gè)零點(diǎn),即函數(shù)f(x)=x3﹣3x2﹣9x+3,與y=m兩個(gè)函數(shù)的圖象有三個(gè)交點(diǎn),下研究函數(shù)f(x)=x3﹣3x2﹣9x+3的性質(zhì) 由題意f'(x)=3x2﹣6x﹣9
令f'(x)=3x2﹣6x﹣9>0解得x>3或x<﹣1
又x∈[﹣2,5]
故f(x)=x3﹣3x2﹣9x+3在(﹣2,﹣1)與(3,5)上是增函數(shù),在(﹣1,3)上是減函數(shù),
x=﹣2,﹣1,3,5時(shí),函數(shù)值對(duì)應(yīng)為1,8,﹣24,8
其圖象如圖,可得1≤m<8
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,A1 , A2 , B1 , B2為橢圓頂點(diǎn),F(xiàn)2為右焦點(diǎn),延長(zhǎng)B1F2與A2B2交于點(diǎn)P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是( )
A.( ,1)
B.(0, )
C.(0, )
D.( ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2﹣2x.
(Ⅰ)寫(xiě)出函數(shù)y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3個(gè)不同的解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),, .
(1)若是的極值點(diǎn),且直線分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值為( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實(shí)數(shù)a取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,則下列關(guān)于函數(shù)f(x)的說(shuō)法正確的是( )
A.為奇函數(shù)且在R上為增函數(shù)
B.為偶函數(shù)且在R上為增函數(shù)
C.為奇函數(shù)且在R上為減函數(shù)
D.為偶函數(shù)且在R上為減函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com