【題目】如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,則實數(shù)a取值范圍是

【答案】
【解析】解:a<0時,函數(shù)f(x)=ax2+2x+a2﹣3的圖象是開口朝上,且以x= 為對稱軸的拋物線,如果函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,
≤2,或 ≥4,
解得:a∈
a=0時,f(x)=2x﹣3區(qū)間[2,4]上具有單調(diào)性,滿足條件,
a>0時,函數(shù)f(x)=ax2+2x+a2﹣3的圖象是開口朝上,且以x= 為對稱軸的拋物線,
此時 <2恒成立,故函數(shù)f(x)=ax2+2x+a2﹣3在區(qū)間[2,4]上具有單調(diào)性,
綜上所述,a∈ ,
所以答案是:
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直線坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)直線的普通方程和曲線的參數(shù)方程;

(2)設(shè)點上, 處的切線與直線垂直,求的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個零點,則m的取值范圍為(
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對稱,且g(x)的圖象過(4,2)點.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足條件an+1=
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知對任意的n∈N+ , 都有an≠1,求證:an+3=an對任意的正整數(shù)n都成立;
(3)在(1)的條件下,求a2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機在正常使用情況下的電池供電時間,分別從該品牌手機的甲、乙兩種型號中各選取部進行測試,其結(jié)果如下:

甲種手機供電時間(小時)

乙種手機供電時間(小時)

(1)求甲、乙兩種手機供電時間的平均值與方差,并判斷哪種手機電池質(zhì)量好;

(2)為了進一步研究乙種手機的電池性能,從上述部乙種手機中隨機抽取部求這兩部手機中恰有一部手機的供電時間大于該種手機供電時間平均值的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機取兩個球.

(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機變量X,求隨機變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象與y=2的圖象的兩相鄰交點的距離為π,要得到y(tǒng)=2sinωx的圖象,只需把y=f(x)的圖象(
A.向右平移
B.向左平移
C.向左平移
D.向右平移

查看答案和解析>>

同步練習(xí)冊答案