【題目】在直角坐標系中,直線l的參數方程為(t為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,為直線l上一點,求.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相,F有十二生肖吉祥物各一件,甲、乙、丙三位同學一次隨機抽取一件作為禮物,甲同學喜歡馬、牛,乙同學喜歡馬、龍、狗,丙同學除了鼠不喜歡外其他的都喜歡,則這三位同學抽取的禮物都喜歡的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】商品價格與商品需求量是經濟學中的一種基本關系,某服裝公司需對新上市的一款服裝制定合理的價格,需要了解服裝的單價x(單位:元)與月銷量y(單位:件)和月利潤z(單位:元)的影響,對試銷10個月的價格和月銷售量()數據作了初步處理,得到如圖所示的散點圖及一些統計量的值.
x | y | |||||
61 | 0.018 | 372 | 2670 | 26 | 0.0004 |
表中.
(1)根據散點圖判斷,與哪一個適宜作為需求量y關于價格x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立y關于x的回歸方程;
(3)已知這批服裝的成本為每件10元,根據(1)的結果回答下列問題;
(i)預測當服裝價格時,月銷售量的預報值是多少?
(span>ii)當服裝價格x為何值時,月利潤的預報值最大?(參考數據)
附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,過定點作直線與拋物線相交于、兩點.
(1)已知,若點是點關于坐標原點的對稱點,求面積的最小值;
(2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正整數的數列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數).
(1)若k=,t=,數列{an}是等差數列,求a1的值;
(2)若數列{an}是等比數列,求證:k<t.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com