【題目】已知函數(shù)
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;
(Ⅲ)若數(shù)列的前項和, ,求證:數(shù)列的前項和.
【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ)證明見解析.
【解析】試題分析: 將,求出切線方程求導后討論當時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時, 得,下面證明:
解析:(Ⅰ)因為,所以, ,切點為.
由,所以,所以曲線在處的切線方程為,即
(Ⅱ)由,令,
則(當且僅當取等號).故在上為增函數(shù).
①當時, ,故在上為增函數(shù),
所以恒成立,故符合題意;
②當時,由于, ,根據(jù)零點存在定理,
必存在,使得,由于在上為增函數(shù),
故當時, ,故在上為減函數(shù),
所以當時, ,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為
(III)證明:由
由(Ⅱ)知當時, ,故當時, ,
故,故.下面證明:
因為
而,
所以, ,即:
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知過原點O的直線與函數(shù)的圖象交于A,B兩點,分別過A,B作y軸的平行線與函數(shù)圖象交于C,D兩點,若軸,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣aex﹣e2x(a∈R,e是自然對數(shù)的底數(shù)). (Ⅰ)若f(x)≤0對任意x∈R恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若方程x﹣aex=0有兩個不同的實數(shù)解x1 , x2 , 求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓與軸的左右交點分別為,與軸正半軸的交點為.
(1)若直線過點并且與圓相切,求直線的方程;
(2)若點是圓上第一象限內(nèi)的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,VA 垂直于⊙O所在的平面,點C是圓周上不同于A,B的任意一點,M,N分別為VA,VC的中點,則下列結(jié)論正確的是( )
A. MN∥AB B. MN與BC所成的角為45°
C. OC⊥平面VAC D. 平面VAC⊥平面VBC
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|2x+1|,a∈R.
(1)當a=1時,求不等式f(x)≤1的解集;
(2)設(shè)關(guān)于x的不等式f(x)≤-2x+1的解集為P,且 P,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(1,2),過點P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點,則△ABC是( )
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為普及高中生安全逃生知識與安全防護能力,某學校高一年級舉辦了高中生安全知識與安全逃生能力競賽.該競賽分為預賽和決賽兩個階段,預賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表.
分數(shù)(分數(shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | 9 | x |
[70,80) | y | 0.38 |
[80,90) | 16 | 0.32 |
[90,100) | z | s |
合計 | p | 1 |
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預賽成績不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一二班有甲、乙兩名同學取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一二班在決賽中進入前三名的人數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com