(14分)若數(shù)列滿足其中為常數(shù),則稱數(shù)列為等方差數(shù)列.已知等方差數(shù)列滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)記,則當(dāng)實(shí)數(shù)大于4時(shí),不等式能否對于一切的恒成立?請說明理由.解析:(Ⅰ)由 得,
,
數(shù)列的通項(xiàng)公式為; ………………………………4分
(Ⅱ)
設(shè) ①
②
①-②,得
.
即數(shù)列的前項(xiàng)和為; ……………………………9分
(Ⅲ)解法1:,不等式恒成立,
即對于一切的恒成立.
設(shè)=.當(dāng)時(shí),由于對稱軸=,且=
而函數(shù)在是增函數(shù),∴不等式恒成立,
即當(dāng)時(shí),不等式對于一切的恒成立.……………14分
解法2:,不等式恒成立,即對于一切的恒成立.
∴
∵ ≥1,∴ 而
∴ 恒成立.
故當(dāng)時(shí),不等式對于一切的恒成立. ………………14分年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:
①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));
②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));
再利用可求得,進(jìn)而求得.
根據(jù)上述結(jié)論求下列問題:
(1)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(2)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(3)當(dāng),()時(shí),記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:
①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));
②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));
再利用可求得,進(jìn)而求得.
根據(jù)上述結(jié)論求下列問題:
(1)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(2)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(3)當(dāng),()時(shí),記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com