數(shù)列滿足,其中為常數(shù).若存在實數(shù),使得數(shù)列為等差數(shù)列或等比數(shù)列,則數(shù)列的通項公式      
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=2,an+1=λan+2n(n∈N*),其中λ為常數(shù).
(1)是否存在實數(shù)λ,使得數(shù)列{an}為等差數(shù)列或等比數(shù)列?若存在,求出其通項公式;若不存在,說明理由;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且Sn=(1+λ)-λan,其中λ為常數(shù),且λ≠-1,0,n∈N+
(1)證明:數(shù)列{an}是等比數(shù)列.
(2)設數(shù)列{an}的公比q=f(λ),數(shù)列{bn}滿足b1=
1
2
,bn=f(bn-1)(n∈N+,n≥2),求數(shù)列{bn}的通項公式.
(3)設λ=1,Cn=an(
1
bn
-1)
,數(shù)列{Cn}的前n項和為Tn,求證:當n≥2時,2≤Tn<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(14分)若數(shù)列滿足其中為常數(shù),則稱數(shù)列為等方差數(shù)列.已知等方差數(shù)列滿足.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)求數(shù)列的前項和;

    (Ⅲ)記,則當實數(shù)大于4時,不等式能否對于一切的恒成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列滿足為常數(shù)),則稱數(shù)列為等比和數(shù)列,k稱為公比和.已知數(shù)列是以3為公比和的等比和數(shù)列,其中,則      

查看答案和解析>>

同步練習冊答案