已知定義在R上的函數(shù)y=f(x)滿足條件f(x+數(shù)學(xué)公式)=-f(x),且函數(shù)y=f(x-數(shù)學(xué)公式)為奇函數(shù),下面關(guān)于f(x)的判定正確序號(hào)的選項(xiàng)為
①函數(shù)f(x)是周期函數(shù);   、诤瘮(shù)f(x)的圖象關(guān)于點(diǎn)(-數(shù)學(xué)公式,0)對(duì)稱;
③函數(shù)f(x)為R上的單調(diào)函數(shù);、芎瘮(shù)f(x)為R上的偶函數(shù).


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ①②③
  4. D.
    ①②④
D
分析:①把x取代入f(x+)=-f(x),即可求出周期;
②先求函數(shù)y=f(x-)的對(duì)稱中心,通過(guò)圖象平移求函數(shù)f(x)的對(duì)稱中心;
③周期函數(shù)不符合單調(diào)函數(shù)的定義;
④根據(jù)函數(shù)y=f(x-)為奇函數(shù),得出,
結(jié)合條件f(x+)=-f(x),聯(lián)立變化可證函數(shù)f(x)為偶函數(shù).
解答:①因?yàn)槎x在R上的函數(shù)y=f(x)滿足條件f(x+)=-f(x),取x=x+得:
=-[-f(x)]=f(x),所以函數(shù)f(x)是周期為3的函數(shù);
②函數(shù)y=f(x-)為奇函數(shù),則其圖象關(guān)于(0,0)對(duì)稱,而函數(shù)f(x)的圖象是把函數(shù)y=f(x-)的圖象向左平移個(gè)單位得到的,所以數(shù)f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱;
③因?yàn)楹瘮?shù)f(x)是周期函數(shù),不滿足函數(shù)的單調(diào)性概念所以函數(shù)f(x)不是R上的單調(diào)函數(shù);
④因?yàn)楹瘮?shù)y=f(x-)為奇函數(shù),所以有,
取x=x+,則有,所以
又f(x+)=-f(x),所以f(x+)=f(-x-),再令x=x+,所以有
所以有f(x+3)=f(-x-3),即f(x)=f(-x),所以函數(shù)f(x)為偶函數(shù),圖象關(guān)于y軸對(duì)稱.
所以敘述正確的是①②④.
故選D.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性和奇偶性,考查了迭代法,同時(shí)考查了函數(shù)的圖象平移問(wèn)題,解答此題的關(guān)鍵是靈活運(yùn)用變量x的變化,是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案