(本小題滿分14分)對定義域分別是、的函數(shù)、,
規(guī)定:函數(shù)
已知函數(shù),.
(1)求函數(shù)的解析式;
⑵對于實(shí)數(shù),函數(shù)是否存在最小值,如果存在,求出其最小值;如果不存在,請說明理由.
(1)⑵當(dāng)時(shí),函數(shù)沒有最小值;當(dāng)時(shí),函數(shù)的最小值為;當(dāng)時(shí),函數(shù)的最小值為
解析試題分析:(1)因?yàn)楹瘮?shù)的定義域,函數(shù)的定義域,所以 ………………4分
(2)當(dāng)時(shí),函數(shù)單調(diào)遞減,
所以函數(shù)在上的最小值為.當(dāng)時(shí),.
若,函數(shù).此時(shí),函數(shù)存在最小值h(0)=0.
若,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/17/6/szjzo.png" style="vertical-align:middle;" />,
所以函數(shù)在上單調(diào)遞增.此時(shí),函數(shù)不存在最小值.
若,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a2/d/1fa454.png" style="vertical-align:middle;" />,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.此時(shí),函數(shù)的最小值為.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1f/a/16fju.png" style="vertical-align:middle;" />,
所以當(dāng)時(shí),,當(dāng)時(shí),.
綜上可知,當(dāng)時(shí),函數(shù)沒有最小值;當(dāng)時(shí),函數(shù)的最小值為;當(dāng)時(shí),函數(shù)的最小值為.…………………14分
考點(diǎn):分段函數(shù)及利用導(dǎo)數(shù)求函數(shù)最值
點(diǎn)評:本題第一小題考查的是分段函數(shù),分段函數(shù)針對于不同的自變量的范圍有不同的解析式,第二小題難在需要對a分情況討論從而確定函數(shù)單調(diào)性求解其最值,學(xué)生不易找到分情況討論的入手點(diǎn),本題難度大
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)已知.
(I)求的單調(diào)增區(qū)間;
(II)若在定義域R內(nèi)單調(diào)遞增,求的取值范圍;
(III)是否存在,使在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)我們把同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)稱為“和諧函數(shù)” :
①函數(shù)在整個(gè)定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/3/1uyvx2.png" style="vertical-align:middle;" />.
⑴已知冪函數(shù)的圖像經(jīng)過點(diǎn),判斷是否是和諧函數(shù)?
⑵判斷函數(shù)是否是和諧函數(shù)?
⑶若函數(shù)是和諧函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)探究函數(shù)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)證明:是奇函數(shù);
(2)求的單調(diào)區(qū)間;
(3)寫出函數(shù)圖象的一個(gè)對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/4/vzcli.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點(diǎn)的橫坐標(biāo),求點(diǎn)的坐標(biāo)(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)在點(diǎn)處的切線方程為.
(I)求,的值;
(II)對函數(shù)定義域內(nèi)的任一個(gè)實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知是定義在[-1,1]上的奇函數(shù),當(dāng),且時(shí)有.
(1)判斷函數(shù)的單調(diào)性,并給予證明;
(2)若對所有恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com