(本小題滿分12分)探究函數(shù)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1);當(dāng)
(2)證明:設(shè)是區(qū)間,(0,2)上的任意兩個(gè)數(shù),且
又
函數(shù)在(0,2)上為減函數(shù).
(3)思考:。
解析試題分析:(1);當(dāng) 4分
(2)證明:設(shè)是區(qū)間,(0,2)上的任意兩個(gè)數(shù),且
又
函數(shù)在(0,2)上為減函數(shù). 10分
(3)思考: 12分
考點(diǎn):本題主要考查函數(shù)的單調(diào)性、最值。
點(diǎn)評(píng):典型題,“對(duì)號(hào)函數(shù)”是高考常?疾榈囊活惡瘮(shù),其單調(diào)性及取得最值的情況又具有一般性,因此,學(xué)習(xí)中應(yīng)倍加關(guān)注。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù),其中.
( I )若函數(shù)圖象恒過定點(diǎn)P,且點(diǎn)P在的圖象上,求m的值;
(Ⅱ)當(dāng)時(shí),設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點(diǎn)P、Q,
使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且該三角形斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是一塊邊長為100m的正方形地皮,其中AST是一半徑為90m的扇形小山,其他部分都是平地.一開發(fā)商想在平地上建一個(gè)矩形停車場,使矩形的一個(gè)頂點(diǎn)P在弧ST上,相鄰兩邊CQ,CR落在正方形的邊BC,CD上,求矩形停車場PQCR的面積S的最大值和最小值(結(jié)果取整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)如果函數(shù)的單調(diào)減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)證明:對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像與軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若與在區(qū)間上都是減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)對(duì)定義域分別是、的函數(shù)、,
規(guī)定:函數(shù)
已知函數(shù),.
(1)求函數(shù)的解析式;
⑵對(duì)于實(shí)數(shù),函數(shù)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題14分)
已知是一個(gè)奇函數(shù).
(1)求的值和的值域;
(2)設(shè)>,若在區(qū)間是增函數(shù),求的取值范圍
(3) 設(shè),若對(duì)取一切實(shí)數(shù),不等式都成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com