向量
2
3
經(jīng)矩陣
01
10
變化后得到的矩陣為
 
考點:旋轉(zhuǎn)變換
專題:選作題,矩陣和變換
分析:利用二階矩陣與列向量的乘法,可得結(jié)論.
解答: 解:由題意
01
10
2
3
=
3
2
,
故答案為:
3
2
點評:本題考查二階矩陣與列向量的乘法,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6.點P在曲線C上,則點P到直線l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點在x軸的橢圓
x2
4a
+
y2
a2+1
=1(a>0),則它的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+x+1(x∈[1,4])的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+3x-2的兩個零點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1和F2,左、右頂點分別為A1和A2,過焦點F2且與x軸垂直的直線和雙曲線的一個交點為P,若|
PA1
|是|
F1F2
|和|
A1F2
|的等比中項,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

表面積為324π的球,其內(nèi)接長方體的高是14,且底面是正方形,則這個長方體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1,把一根拉緊的細繩兩端分別系在AC1兩點,此時這個正方體的正視圖可能是( 。
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(b>a>0)的右頂點A作斜率為1的直線,該直線與雙曲線的一條漸近線y=
b
a
x交于點B,與另一條漸近線y=-
b
a
x交于點C,若A,B,C三點的橫坐標(biāo)成等比數(shù)列,則雙曲線的離心率為( 。
A、
13
B、
10
C、
5
D、
3

查看答案和解析>>

同步練習(xí)冊答案