已知極坐標(biāo)的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6.點P在曲線C上,則點P到直線l的距離的最小值為
 
考點:參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:把參數(shù)方程、極坐標(biāo)化為直角坐標(biāo)方程,求出圓心到直線的距離,再把此距離減去半徑,即得所求.
解答: 解:把曲線C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),消去參數(shù),化為直角坐標(biāo)方程為 x2+y2=1,
表示以原點為圓心、半徑等于1的圓.
直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6,化為直角坐標(biāo)方程為 x+
3
y-12=0,
求得圓心到直線的距離為d=
|0+0-12|
1+3
=6,故點P到直線l的距離的最小值為6-1=5,
故答案為:5.
點評:本題主要考查把參數(shù)方程、極坐標(biāo)化為直角坐標(biāo)方程的方法,點到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個盒子中裝有6個小球,其中紅色球4個,編號分別為1,2,3,4;白色球2個,編號分別為3,4,現(xiàn)從盒子中任取3個小球(假設(shè)每個小球從盒中被取出的可能性相同)
(Ⅰ)求取出的3個球中的編號最大數(shù)值為3的概率;
(Ⅱ)在取出的3個球中,記紅色球編號最大數(shù)值為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+x+1,g(x)=f′(x),x∈R
(Ⅰ)證明:對任意a∈R,存在x0∈R,使得f(x),g(x)的圖象在x=x0處的兩條切線斜率相等;
(Ⅱ)求實數(shù)a的范圍,使得f(x),g(x)均在[2,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且滿足Sn=2-an,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=2nan,數(shù)列{bn}的前n項和為Tn,證明:Tn≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}是等差數(shù)列,a4=15,a9=55,則過點P(3,a3),Q(13,a8)的直線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等邊△ABC的邊長為2,平面內(nèi)一點M滿足
CM
=
1
3
CB
+
1
2
CA
,則
MA
MB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,則m7+n7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在三棱錐S-ABC中,SA⊥平面SBC,∠BSC=90°,SC=1,二面A-BC-S為45°,二面角B-AC-S為60°,則三棱錐S-ABC外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
2
3
經(jīng)矩陣
01
10
變化后得到的矩陣為
 

查看答案和解析>>

同步練習(xí)冊答案