(本題滿分13分)在正三角形內有一動點,已知到三頂點的距離分別為,且滿足,求點的軌跡方程.
()

試題分析:以的中點為原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,
設點,,,
用點的坐標表示等式,
,
化簡得,
即所求的軌跡方程為().                        ……13分
點評:求軌跡方程主要有“相關點法”和“直接法”,應用時要注意“求誰設誰”的原則.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,橢圓,若的離心率為,如果相交于兩點,且線段恰為圓的直徑,求直線與橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)點為橢圓內的一定點,過P點引一直線,與橢圓相交于兩點,且P恰好為弦AB的中點,如圖所示,求弦AB所在的直線方程及弦AB的長度。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左、右頂點分別為、,點在橢圓上且異于、兩點,為坐標原點.
(1)若直線的斜率之積為,求橢圓的離心率;
(2)對于由(1)得到的橢圓,過點的直線軸于點,交軸于點,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若焦點在軸上的橢圓的離心率為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的左,右焦點分別為,過 的直線L與橢圓C相交 A,B于兩點,且直線L的傾斜角為,點到直線L的距離為 ,
(1)  求橢圓C的焦距.(2)如果求橢圓C的方程.(12分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點,橢圓與直線交于點、,則的周長為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的周長是8,,則頂點A的軌跡方程是( )
A.   B.
C.     D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.若點和點分別為橢圓的中心和左焦點,點為橢圓上的任意一點,
的取值范圍為( )
                                   

查看答案和解析>>

同步練習冊答案