【題目】設(shè)實數(shù)滿足,若的最大值為16,則實數(shù)__________

【答案】3

【解析】

先畫出可行域,得到角點坐標(biāo).再對k進行分類討論,通過平移直線zkx+y得到最大值點A,即可得到答案.

實數(shù)x,y滿足的可行域如圖:

得:A(4,4),

同樣地,得B(0,2),

zkx+y,即y=﹣kx+z,分k>0,k<0兩種情況.

當(dāng)k>0時,

目標(biāo)函數(shù)zkx+yA點取最大值,即直線zkx+yy軸上的截距z最大,即16=4k+4,得k=3;

當(dāng)k<0時,

①當(dāng)k時,目標(biāo)函數(shù)zkx+yA點(4,4)時取最大值,

即直線zkx+yy軸上的截距z最大,

此時,16=4k+4,

k=3.

②當(dāng)k時,目標(biāo)函數(shù)zkx+yB點(0,2)時取最大值,

即直線zkx+yy軸上的截距z最大,

此時,16=0×k+2,

k不存在.

綜上,k=3.

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):

(年)

2

3

4

5

6

(萬元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,⊥平面,的中點.

(Ⅰ)證明:∥平面;

(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】越接近高考學(xué)生焦慮程度越強,四個高三學(xué)生中大約有一個有焦慮癥,經(jīng)有關(guān)機構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應(yīng)的正常值變化情況如下表:

周數(shù)x

6

5

4

3

2

1

正常值y

55

63

72

80

90

99

(1)作出散點圖:

(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程 (精確到0.01);

(3)根據(jù)經(jīng)驗,觀測值為正常值的0.851.06為正常,若1.061.12為輕度焦慮,1.121.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進行心理疏導(dǎo),若一個學(xué)生在距高考第二周時觀測值為100,則該學(xué)生是否需要進行心理疏導(dǎo)?

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)內(nèi)有兩個極值點x1x2x1x2),其中a為常數(shù).

1)求實數(shù)a的取值范圍;

2)求證:x1+x22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)

在等差數(shù)列{an},a1=1,公差d≠0,a1a2,a5是等比數(shù)列{bn}的前三項

(1)求數(shù)列{an}{bn}的通項公式;

(2)設(shè)cn=an·bn求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的展開式中,的系數(shù)是( )

A. -160 B. -120 C. 40 D. 200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(1)設(shè)上的一點,證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若(ac·cos B)·sin B=(bc·cos A)·sin A,判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊答案