【題目】為了積極支持雄安新區(qū)建設(shè),鼓勵(lì)更多優(yōu)秀大學(xué)生畢業(yè)后能到新區(qū)去,某985高校組織了一次模擬招聘活動(dòng),現(xiàn)從考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),并按成績(jī)分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,(由于某種原因,部分直方圖不夠清晰),同時(shí)規(guī)定成績(jī)不低于90分為“優(yōu)秀”,成績(jī)低于90分為“良好”,且只有成績(jī)“優(yōu)秀”的學(xué)生才能獲得專題測(cè)試資格.

(1)若已知分?jǐn)?shù)段的人數(shù)比為2:1,請(qǐng)補(bǔ)全損壞的直方圖;

(2)如果用分層抽樣的方法從成績(jī)?yōu)椤皟?yōu)秀”和“良好”中選出10人,設(shè)甲是選出的成績(jī)“優(yōu)秀”中的一個(gè),若從選出的成績(jī)“優(yōu)秀”的學(xué)生中再任選2人參加兩項(xiàng)不同的專題測(cè)試(每人參加一種,二者互不相同),求甲被選中的概率.

【答案】(1) 見(jiàn)解析(2)

【解析】

(1)由頻率分布直方圖得[90,100]的頻率為0.3,由分?jǐn)?shù)段[90,95)與[95,100]的人數(shù)比為2:1,求出分?jǐn)?shù)段[90,95)與[95,100]對(duì)應(yīng)的小矩形有高分別為0.02,0.01,由此能求出補(bǔ)齊損壞的直方圖.

(2)由頻率分布直方圖得[90,100]的頻率為0.3,用分層抽樣的方法從成績(jī)?yōu)椤皟?yōu)秀”和“良好”中選出10人,其中選中“優(yōu)秀”的學(xué)生有3人,選中“良好”的學(xué)生有7人,由此能求出甲被選中的概率.

(1)根據(jù)題意得良好學(xué)生的人數(shù)為100×(0.01+0.07+0.06)×5=70人,

所以 優(yōu)秀學(xué)生的人數(shù)為100-70=30人

又因?yàn)榉謹(jǐn)?shù)段的人數(shù)比為2:1,

所以兩分?jǐn)?shù)段的分?jǐn)?shù)分別為20人和10人.

故補(bǔ)齊后的直方圖如圖所示

(2)由頻率分布直方圖得:

[90,100]的頻率為:1﹣(0.01+0.07+0.06)×5=0.3,

∴用分層抽樣的方法從成績(jī)?yōu)椤皟?yōu)秀”和“良好”中選出10人,

其中選中“優(yōu)秀”的學(xué)生有3人,選中“良好”的學(xué)生有7人,

設(shè)甲是選出的成績(jī)“優(yōu)秀”中的一個(gè),

從選出的成績(jī)“優(yōu)秀”的學(xué)生中再任選2人參加兩項(xiàng)不同的專題測(cè)試,

基本事件總數(shù)n,

甲被選中包含的基本事件個(gè)數(shù)m2.

∴甲被選中的概率p

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在實(shí)數(shù),使得成立.

1)已知函數(shù),判斷 函數(shù)是否屬于集合;

2)若函數(shù)屬于集合,試求實(shí)數(shù)的取值范圍;

3 證明函數(shù)屬于集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市春節(jié)大酬賓,購(gòu)物滿100元可參加一次抽獎(jiǎng)活動(dòng),規(guī)則如下:顧客將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應(yīng)獲得袋子里的獎(jiǎng)品.已知小球每次遇到黑色障礙物時(shí),向左向右下落的概率都為.若活動(dòng)當(dāng)天小明在該超市購(gòu)物消費(fèi)108元,按照活動(dòng)規(guī)則,他可參加一次抽獎(jiǎng),則小明獲得A袋中的獎(jiǎng)品的概率為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱錐,一個(gè)正三棱柱的一個(gè)底面的三個(gè)頂點(diǎn)在正三棱錐的三條側(cè)棱上,另一底面在正三棱錐的底面上,若正三棱錐的高為15,底面邊長(zhǎng)為12,內(nèi)接正三棱柱的側(cè)面積為120.

1)求三棱柱的高;

2)求棱柱的上底面截棱錐所得的小棱錐與原棱錐的側(cè)面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分。設(shè)在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立,甲、乙的一局比賽中,甲先發(fā)球.則開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是直角梯形,,,側(cè)棱平面ABCD,且.

1)求證:平面平面;

2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路汽車的車流量(千輛/h)與汽車的平均速度之間的函數(shù)關(guān)系式為:

1)若要求在該段時(shí)間內(nèi)車流量超過(guò)2千輛,則汽車在平均速度應(yīng)在什么范圍內(nèi)?

2)在該時(shí)段內(nèi),若規(guī)定汽車平均速度不得超過(guò),當(dāng)汽車的平均速度為多少時(shí),車流量最大?最大車流量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)在以,為焦點(diǎn)的橢圓上.

(1)求橢圓的方程;

(2)經(jīng)過(guò)作直線于兩點(diǎn),交軸于點(diǎn),若,,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,若(ac·cos B)·sin B=(bc·cos A)·sin A,判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案