【題目】已知正三棱錐,一個(gè)正三棱柱的一個(gè)底面的三個(gè)頂點(diǎn)在正三棱錐的三條側(cè)棱上,另一底面在正三棱錐的底面上,若正三棱錐的高為15,底面邊長(zhǎng)為12,內(nèi)接正三棱柱的側(cè)面積為120.

1)求三棱柱的高;

2)求棱柱的上底面截棱錐所得的小棱錐與原棱錐的側(cè)面積之比.

【答案】11052

【解析】

1)設(shè)正三棱柱的高為 ,底面邊長(zhǎng)為 ,根據(jù)相似比有,再根據(jù)正三棱柱的側(cè)面積為120,有,兩式聯(lián)立求解.

2)根據(jù)面積之比等于相似比的平方,結(jié)合(1)的結(jié)論求解.

1)設(shè)正三棱柱的高為 ,底面邊長(zhǎng)為 ,如圖所示:

解得

又因?yàn)檎庵膫?cè)面積為120.

所以

所以

解得

所以三棱柱的高是105.

2)因?yàn)槊娣e之比等于相似比的平方,

所以棱柱的上底面截棱錐所得的小棱錐與原棱錐的側(cè)面積之比: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),

的單調(diào)區(qū)間;

對(duì),使成立,求實(shí)數(shù)m的取值范圍;

設(shè)上有唯一零點(diǎn),求正實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形中,邊所在的直線方程分別為,的中點(diǎn)為.

1)求的坐標(biāo);

2)求角的內(nèi)角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnx,其中a0.曲線y=fx)在點(diǎn)(1f1))處的切線與直線y=x+1垂直.

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求函數(shù)fx)在區(qū)間[1,e]上的極值和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點(diǎn),垂足為E,點(diǎn)FPB上一點(diǎn),則下列判斷中不正確的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了積極支持雄安新區(qū)建設(shè),鼓勵(lì)更多優(yōu)秀大學(xué)生畢業(yè)后能到新區(qū)去,某985高校組織了一次模擬招聘活動(dòng),現(xiàn)從考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),并按成績(jī)分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,(由于某種原因,部分直方圖不夠清晰),同時(shí)規(guī)定成績(jī)不低于90分為“優(yōu)秀”,成績(jī)低于90分為“良好”,且只有成績(jī)“優(yōu)秀”的學(xué)生才能獲得專題測(cè)試資格.

(1)若已知分?jǐn)?shù)段的人數(shù)比為2:1,請(qǐng)補(bǔ)全損壞的直方圖;

(2)如果用分層抽樣的方法從成績(jī)?yōu)椤皟?yōu)秀”和“良好”中選出10人,設(shè)甲是選出的成績(jī)“優(yōu)秀”中的一個(gè),若從選出的成績(jī)“優(yōu)秀”的學(xué)生中再任選2人參加兩項(xiàng)不同的專題測(cè)試(每人參加一種,二者互不相同),求甲被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,,數(shù)列的前項(xiàng)和,點(diǎn))均在函數(shù)的圖像上.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),是數(shù)列的前項(xiàng)和,求滿足)的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于不等式的解集為.

(1)當(dāng)為空集時(shí),求的取值范圍;

(2)在(1)的條件下,求的最小值;

(3)當(dāng)不為空集,且時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案