【題目】對于以下四個命題:①兩條異面直線有無數(shù)條公垂線;②直線在平面內(nèi)的射影是直線;③如果兩條直線在同一個平面內(nèi)的射影平行,那這兩條直線平行;④過兩條異面直線的一條有且僅有一個平面與已知直線平行;上述命題中為真命題的個數(shù)為( )個

A.B.C.D.

【答案】A

【解析】

根據(jù)異面直線的概念與性質(zhì),以直線與平面位置關(guān)系,逐項判斷即可得出結(jié)果.

①任意兩條異面直線的公垂線有且僅有一條;故①錯;

②當(dāng)直線與平面垂直時,直線在平面內(nèi)的射影是點,故②錯;

③當(dāng)兩條直線在同一個平面內(nèi)的射影平行,那這兩條直線可能平行,或異面;故③錯;

④過兩條異面直線的一條如果有兩個平面與已知直線平行,則第一條直線即是這兩個平面的交線,且第二條直線與兩平面都平行,則第二條直線平行與兩平面的交線,即兩直線平行,與兩直線異面矛盾,所以過兩條異面直線的一條有且僅有一個平面與已知直線平行;故④正確;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下.

甲說:“同時獲獎.”

乙說:“不可能同時獲獎.”

丙說:“獲獎.”

丁說:“、至少一件獲獎”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C的離心率是,過焦點且垂直于x軸的直線被橢圓截得的弦長為

求橢圓C的方程;

過點的動直線l與橢圓C相交于A,B兩點,在y軸上是否存在異于點P的定點Q,使得直線l變化時,總有?若存在,求點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求的單調(diào)區(qū)間;

(2)是否存在正實數(shù)使得,若存在求出,否則說明理由;

(3)若存在不等實數(shù),使得證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?

(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小威初三參加某高中學(xué)校的數(shù)學(xué)自主招生考試,這次考試由十道選擇題組成,得分要求是:做對一道題得1分,做錯一道題扣去1分,不做得0分,總得分7分就算及格,小威的目標(biāo)是至少得7分獲得及格,在這次考試中,小威確定他做的前六題全對,記6分,而他做余下的四道題中,每道題做對的概率均為p,考試中,小威思量:從余下的四道題中再做一題并且及格的概率從余下的四道題中恰做兩道并且及格的概率,他發(fā)現(xiàn),只做一道更容易及格.

(1)設(shè)小威從余下的四道題中恰做三道并且及格的概率為,從余下的四道題中全做并且及格的概率為,

(2)由于p的大小影響,請你幫小威討論:小威從余下的四道題中恰做幾道并且及格的概率最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)列、、、、,若不改變,僅改變、、中部分項的符號(可以都不改變),得到的新數(shù)列稱為數(shù)列的一個生成數(shù)列,如僅改變數(shù)列、、、的第二、三項的符號,可以得到一個生成數(shù)列:、、、.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項和.

1)寫出的所有可能的值;

2)若生成數(shù)列的通項公式為,求;

3)用數(shù)學(xué)歸納法證明:對于給定的,的所有可能值組成的集合為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).

(1)求函數(shù)f(x)的極值;

(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍;

(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a=1時,求函數(shù)在(2,)處的切線方程:

(2)當(dāng)a=2時,求函數(shù)的單調(diào)區(qū)間和極值;

(3)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案