【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
【答案】(1)見(jiàn)解析;(2);(3)4
【解析】
(1)對(duì)求導(dǎo),通過(guò)的正負(fù),列表分析的單調(diào)性進(jìn)而求得極值.
(2)先求得的解析式,對(duì)其求導(dǎo),原題轉(zhuǎn)化為導(dǎo)函數(shù)在上恒成立,令,求得a的范圍.(3)由題意知在上有兩個(gè)不等實(shí)根,即在上有兩個(gè)不等實(shí)根,對(duì)求導(dǎo)分析可得在和上各有一個(gè)實(shí)根,從而得到極大值,將視為關(guān)于的函數(shù),求導(dǎo)得到,又因?yàn)?/span>,得到整數(shù)b的最小值.
(1),,令,解得,列表:
2 | |||
+ | 0 | - | |
極大值 |
∴當(dāng)時(shí),函數(shù)取得極大值,無(wú)極小值
(2)由,得
∵,令,
∴函數(shù)在區(qū)間上單調(diào)遞增等價(jià)于對(duì)任意的,函數(shù)恒成立
∴,解得.
(3),
令,
∵在上既存在極大值又存在極小值,∴在上有兩個(gè)不等實(shí)根,
即在上有兩個(gè)不等實(shí)根.
∵
∴當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減
則,∴,解得,∴
∵在上連續(xù)且,
∴在和上各有一個(gè)實(shí)根
∴函數(shù)在上既存在極大值又存在極小值時(shí),有,并且在區(qū)間上存在極小值,在區(qū)間上存在極大值.
∴,且
,
令,,當(dāng)時(shí),,單調(diào)遞減
∵,∴,即,則
∵的極大值小于整數(shù),∴滿(mǎn)足題意的整數(shù)的最小值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某公司成本為元,所得的利潤(rùn)元的幾組數(shù)據(jù)入下.
第一組 | 第二組 | 第三組 | 第四組 | 第五組 | |
1 | 4 | 5 | 2 | 3 | |
2 | 1 | 3 | 4 | 0 |
根據(jù)上表數(shù)據(jù)求得回歸直線(xiàn)方程為:
(1)若這個(gè)公司所規(guī)劃的利潤(rùn)為200萬(wàn)元,估算一下它的成本可能是多少?(保留1位小數(shù))
(2)在每一組數(shù)據(jù)中,,相差,記為事件;,相差,記為事件;,相差,記為事件.隨機(jī)抽兩組進(jìn)行分析,則抽到有事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱中,,,,.
求證:面面;
若,在線(xiàn)段上是否存在一點(diǎn),使二面角的平面角的余弦值為?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人事部門(mén)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級(jí)成功,否則晉級(jí)失敗(滿(mǎn)分為100分).
(1)求圖中的值;
(2)估計(jì)該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);
(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān).
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=,(,).
(1)當(dāng)cos=時(shí),求小路AC的長(zhǎng)度;
(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長(zhǎng)為2個(gè)單位)的頂點(diǎn)處,然后通過(guò)擲骰子來(lái)確定棋子沿正方形的邊按逆時(shí)針?lè)较蛐凶叩膯挝唬绻麛S出的點(diǎn)數(shù)為,則棋子就按逆時(shí)針?lè)较蛐凶?/span>個(gè)單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)處的所有不同走法共有( )
A. 22種 B. 24種 C. 25種 D. 27種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】男運(yùn)動(dòng)員6名,女運(yùn)動(dòng)員4名,其中男女隊(duì)長(zhǎng)各1名.選派5人外出比賽,在下列情形中各有多少種選派方法?
(1)男運(yùn)動(dòng)員3名,女運(yùn)動(dòng)員2名;
(2)至少有1名女運(yùn)動(dòng)員;
(3)隊(duì)長(zhǎng)中至少有1人參加;
(4)既要有隊(duì)長(zhǎng),又要有女運(yùn)動(dòng)員.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】物線(xiàn)的焦點(diǎn)為,已知點(diǎn)為拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,過(guò)弦的中點(diǎn)作該拋物線(xiàn)準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,則的最小值為
A. B. 1 C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示甲,在四邊形ABCD中,,,是邊長(zhǎng)為8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如圖所示乙所示,點(diǎn)O,M,N分別為棱AC,PA,AD的中點(diǎn).
求證:平面PON;
求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com