【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)垂直的直線交軸負(fù)半軸于點(diǎn),且恰好是線段的中點(diǎn).

(1)若過(guò)三點(diǎn)的圓恰好與直線相切,求橢圓的方程;

(2)在(1)的條件下, 是橢圓的左頂點(diǎn),過(guò)點(diǎn)作與軸不重合的直線交橢圓兩點(diǎn),直線分別交直線兩點(diǎn),若直線的斜率分別為,試問(wèn): 是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

【答案】(1);(2)為定值,且定值為.

【解析】【試題分析】(1)依據(jù)題設(shè)條件建立方程求解;(2)運(yùn)用直線與橢圓的位置關(guān)系進(jìn)行分析推證:

解析:(1)由題意知: 是線段的中點(diǎn),設(shè) ,則,因?yàn)?/span>

所以.

由題意知: 外接圓的圓心為斜邊的中點(diǎn),半徑等于.

因?yàn)檫^(guò)三點(diǎn)的圓恰好與直線相切,所以到直線的距離等于半徑,即,解得 ,

所以,橢圓的方程為.

(2)設(shè),直線的方程為,由消去得:

,

所以 ,

三點(diǎn)共線可知: ,即,

同理可得: ,所以

因?yàn)?/span>,

所以,故為定值,且定值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種多面體玩具共有12個(gè)面,在其十二個(gè)面上分別標(biāo)有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個(gè)數(shù)字所在的面朝上的概率均相等.

為檢驗(yàn)?zāi)撑婢呤欠窈细,制定檢驗(yàn)標(biāo)準(zhǔn)為:多次拋擲該玩具,并記錄朝上的面上標(biāo)記的數(shù)字,若各數(shù)字出現(xiàn)的頻率的極差不超過(guò)0.05.則認(rèn)為該玩具合格.

(1)對(duì)某批玩具中隨機(jī)抽取20件進(jìn)行檢驗(yàn),將每個(gè)玩具各面數(shù)字出現(xiàn)頻率的極差繪制成莖葉圖(如圖所示),試估計(jì)這批玩具的合格率;

(2)現(xiàn)有該種類玩具一個(gè),將其拋擲100次,并記錄朝上的一面標(biāo)記的數(shù)字,得到如下數(shù)據(jù):

朝上面的數(shù)字

1

2

3

4

5

6

7

8

9

10

11

12

次數(shù)

9

7

8

6

10

9

9

8

10

9

7

8

1)試判定該玩具是否合格;

2)將該玩具拋擲一次,記事件:向上的面標(biāo)記數(shù)字是完全平方數(shù)(能寫(xiě)成整數(shù)的平方形式的數(shù),如,9為完全平方數(shù));事件:向上的面標(biāo)記的數(shù)字不超過(guò)4.試根據(jù)上表中的數(shù)據(jù),完成以下列聯(lián)表(其中表示的對(duì)立事件),并回答在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,能否認(rèn)為事件與事件有關(guān).

合計(jì)

合計(jì)

100

(參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 的左、右焦點(diǎn)分別為, 為坐標(biāo)原點(diǎn), 是雙曲線上在第一象限內(nèi)的點(diǎn),直線分別交雙曲線左、右支于另一點(diǎn), ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, 是棱上的一個(gè)動(dòng)點(diǎn), 的中點(diǎn).

(Ⅰ)求證:平面平面

(Ⅱ)若,求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;

(2)求函數(shù)在區(qū)間上的最大值;

(3)若方程有且僅有一個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計(jì)算出弧田的面積約為( )

A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù).

1)若函數(shù), 的最小值為-16,求實(shí)數(shù)的值;

(2)若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),不等式的解集為求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中.

(1)討論的單調(diào)性;

(2)若在區(qū)間內(nèi)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于, , 是棱的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求平面與平面所成的二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是直線上的動(dòng)點(diǎn), 與平面所成的角為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案