【題目】已知一次函數(shù)f(x)=ax-2.

(1)當(dāng)a=3時(shí),解不等式|f(x)|<4;

(2)解關(guān)于x的不等式|f(x)|<4;

(3)若關(guān)于x的不等式|f(x)|≤3對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

【答案】(1) ;(2)當(dāng)a>0時(shí),原不等式的解集為;當(dāng)a<0時(shí),原不等式的解集為;(3)[-1,5].

【解析】

(I)a=3時(shí),f(x)=3x﹣2,然后代入|f(x)|<4,去絕對(duì)值后即可求出x的取值范圍;

(II)先去絕對(duì)值,然后討論a的符號(hào),分別求出相應(yīng)的解集即可;

(III)將若不等式|ax﹣2|≤3對(duì)任意x∈(0,1]恒成立,轉(zhuǎn)化成﹣3≤ax﹣2≤3對(duì)任意x∈(0,1]恒成立,然后根據(jù)一次函數(shù)的單調(diào)性即可求出a的取值范圍.

(1)當(dāng)a=3時(shí),f(x)=3x-2,

所以|f(x)|<4|3x-2|<4-4<3x-2<4

-2<3x<6x<2.所以原不等式的解集為.

(2)|f(x)|<4|ax-2|<4-4<ax-2<4-2<ax<6.

當(dāng)a>0時(shí),原不等式的解集為;

當(dāng)a<0時(shí),原不等式的解集為.

(3)|f(x)|≤3|ax-2|≤3-3≤ax-2≤3

-1≤ax≤5

因?yàn)?/span>x∈[0,1],所以-1≤a≤5.

所以實(shí)數(shù)a的取值范圍為[-1,5].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,⊥底面,,,點(diǎn)為棱的中點(diǎn).

(1)(理科生做)證明:

(文科生做)證明:;

(2)(理科生做)若為棱上一點(diǎn),滿足,求二面角的余弦值.

(文科生做)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知關(guān)于的不等式,其中.

1)當(dāng)變化時(shí),試求不等式的解集;

2)對(duì)于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個(gè)數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率是 ,過E的右焦點(diǎn)且垂直于橢圓長(zhǎng)軸的直線與橢圓交于A,B兩點(diǎn),|AB|=2.
(Ⅰ)求橢圓方程;
(Ⅱ)過點(diǎn)P(0, )的動(dòng)直線l與橢圓E交于的兩點(diǎn)M,N(不是的橢圓頂點(diǎn)),是否存在實(shí)數(shù)λ,使 為定值?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線yxm與曲線x恰有一個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)M到點(diǎn)的距離比它到軸的距離大2,記點(diǎn)M的軌跡為C.

(1)求軌跡C的方程;

(2)若直線與軌跡C恰有2個(gè)公共點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐C﹣PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,點(diǎn)M是PC的中點(diǎn),點(diǎn)N在線段AB上,且MN⊥AB.
(1)求AN的長(zhǎng);
(2)求銳二面角P﹣NC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)g(x)滿足g(g(x))=n(n∈N)有n+3個(gè)解,則稱函數(shù)g(x)為“復(fù)合n+3解”函數(shù).已知函數(shù)f(x)= (其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…,k∈R),且函數(shù)f(x)為“復(fù)合5解”函數(shù),則k的取值范圍是(
A.(﹣∞,0)
B.(﹣e,e)
C.(﹣1,1)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F,設(shè)直線l:x=5與x軸的交點(diǎn)為E,過點(diǎn)F且斜率為k的直線l1與橢圓交于A,B兩點(diǎn),M為線段EF的中點(diǎn).
(I)若直線l1的傾斜角為 ,求△ABM的面積S的值;
(Ⅱ)過點(diǎn)B作直線BN⊥l于點(diǎn)N,證明:A,M,N三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案