【題目】如圖,在四棱錐中,⊥底面,,,,,點(diǎn)為棱的中點(diǎn).
(1)(理科生做)證明:;
(文科生做)證明:;
(2)(理科生做)若為棱上一點(diǎn),滿足,求二面角的余弦值.
(文科生做)求點(diǎn)到平面的距離.
【答案】(1)見解析(2)理,文
【解析】
(1理)可通過(guò)以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,然后確定四點(diǎn)的坐標(biāo),最后通過(guò)求得出;
(1文)首先可證明四邊形是平行四邊形,再通過(guò)證明平面;
(2理)先求出向量,然后求出平面和平面的法向量,最后求出二面角的余弦值;
(2文)可通過(guò)等面積法求出點(diǎn)到平面的距離。
(1理)依題意,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系(如圖),
可得,
,
由為棱的中點(diǎn),
得,
向量,,故,
所以.
(1文)取中點(diǎn),聯(lián)接
因?yàn)?/span>是中點(diǎn),所以且
所以且,四邊形是平行四邊形
平面,平面,
所以平面;
(2理)向量,,,.
由點(diǎn)在棱上,設(shè),
故
由,得,因此,解得,
即,設(shè)為平面的法向量,
則,即,
不妨令,可得平面的一個(gè)法向量.
取平面的法向量,則
,
易知,二面角是銳角,所以其余弦值為
(2文)設(shè)到平面距離為,
在中, 因?yàn)?/span>,
所以平面,
所以,在中,
將數(shù)據(jù)代入得。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用6種顏色給右圖四面體A﹣BCD的每條棱染色,要求每條棱只染一種顏色且共頂點(diǎn)的棱染不同的顏色,則不同的染色方法共有( )種.
A.4080
B.3360
C.1920
D.720
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中, 面, 是平行四邊形, , ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上,且,平面與交于點(diǎn),則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長(zhǎng)交的延長(zhǎng)線與點(diǎn)Q,連接QE交PA于點(diǎn)K,設(shè)QA=x,
由,得,則,所以.
取的中點(diǎn)為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點(diǎn)為,已知曲線: 與曲線: 交于不同的兩點(diǎn), .
(1)求的值;
(2)求過(guò)點(diǎn)且與直線平行的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,點(diǎn)滿足,記點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)若直線過(guò)點(diǎn)且與軌跡交于、兩點(diǎn).
(i)無(wú)論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),在軸上總存在定點(diǎn),使恒成立,求實(shí)數(shù)的值.
(ii)在(i)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù),( ),若對(duì)任意,總存在,使得成立,則的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)若的解集為,求的值;
(2)求函數(shù)在上的最小值;
(3)對(duì)于,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是 . (只填寫序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1 km,某炮位于原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).則炮的最大射程為( )
A. 20 km B. 10 km
C. 5 km D. 15 km
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)f(x)=ax-2.
(1)當(dāng)a=3時(shí),解不等式|f(x)|<4;
(2)解關(guān)于x的不等式|f(x)|<4;
(3)若關(guān)于x的不等式|f(x)|≤3對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com