(1)如圖,正六邊形ABCDEF中,點(diǎn)O為其中心,以這七個(gè)點(diǎn)為起點(diǎn)與終點(diǎn)的向量中,與向量
AB
平行的向量有
 
個(gè)(含
AB
).
考點(diǎn):平行向量與共線向量
專題:平面向量及應(yīng)用
分析:結(jié)合圖形,利用列舉法求解.
解答: 解:如圖,正六邊形ABCDEF中,點(diǎn)O為其中心,
以這七個(gè)點(diǎn)為起點(diǎn)與終點(diǎn)的向量中,
與向量
AB
平行的向量有:
AB
BA
,
CO
,
OC
,
CF
,
FC
,
CF
FC
DE
,
ED
,
共10個(gè).
故答案為:10.
點(diǎn)評(píng):本題考查平行向量的個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx,g(x)=
a
x
(a>0)
(1)當(dāng)a=2時(shí),求h(x)=f(x)+g(x)的最小值;
(2)若h(x)=f(x)+g(x),在(0,+∞)上有兩個(gè)不同的零點(diǎn),求a的取值范圍;
(3)證明:
n
k=1
1
k
nln(2e)
2
-
1
2
ln(n!)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在橢圓
x2
4
+
y2
3
=1內(nèi)有一點(diǎn)P(1,-1),F(xiàn)為橢圓右焦點(diǎn),在橢圓上有一點(diǎn)M,使|MP|+2|MF|的值最小,則這一最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)f(x)=xα的圖象經(jīng)過(guò)點(diǎn)(2,4),則f(-3)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(1-ax)5展開式中各項(xiàng)系數(shù)和為32,其中a∈R,該展開式中含x2項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“求方程(
3
5
x+(
4
5
x的解”有如下解題思路:設(shè)f(x)=(
3
5
x+(
4
5
x,則f(x)在R上是單調(diào)遞減函數(shù),且f(2)=1,所以原方程有唯一解x=2.類比上述解題思路,不等式x3-
x+2
>(x+2) 
3
2
-x的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個(gè)面包分給五人,使每人成等差數(shù)列,且使最大的三份之和的
1
3
是較小的兩份之和,則最小1份的大小是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為1的等邊△ABC中,設(shè)點(diǎn)P滿足
BP
=
1
2
BC
+
1
3
BA
,則
BP
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)-
π
2
≤x≤
π
2
時(shí),函數(shù)f(x)=sinx+
3
cosx的值域?yàn)?div id="p9dvah4" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案