如圖四棱錐中,底面是平行四邊形,平面的中點(diǎn),.

(1)試判斷直線與平面的位置關(guān)系,并予以證明;
(2)若四棱錐體積為  ,,求證:平面.
(1)參考解析;(2)參考解析

試題分析:(1)由題意判斷直線與平面的位置關(guān)系,這類題型要轉(zhuǎn)化為直線EF與平面內(nèi)一條直線平行或則相交,所以轉(zhuǎn)化為平面內(nèi)兩條直線的位置關(guān)系.通過(guò)作出直線EG即可得到直線EF與直線CG是相交的,即可得到結(jié)論.
(2)平面與平面垂直關(guān)鍵是要轉(zhuǎn)化為直線與平面的垂直,通過(guò)研究底面平行四邊形的邊的大小即可得到BD垂直于BC.即可得到結(jié)論.

試題解析:(1)直線與平面相交.
證明如下:過(guò),

由底面是平行四邊形得,     
相交,故直線與平面相交.
(2)解:過(guò)B作   四棱錐體積為
平面 
 
,  平面
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn)。

(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面為矩形,平面,,中點(diǎn).

(1)證明://平面
(2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,底面為直角梯形,, 平面,且,的中點(diǎn)

(1) 證明:面
(2) 求面與面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,矩形中,,,且,交于點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:長(zhǎng)方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)試問(wèn):在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn) 
的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直三棱柱ABC-A1B1C1的底面為等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分別是BC,AA1的中點(diǎn).

求(1)異面直線EF和A1B所成的角.
(2)三棱錐A-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為兩兩不重合的平面,為兩兩不重合的直線,給出下列四個(gè)命題:
(1)若,則
(2)若,,,則;
(3)若,,則;
(4)若,,,則
其中正確的命題是(  )
A.(1)(3)B.(2)(3)
C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知αβ是兩個(gè)不同的平面,m,n是兩條不重合的直線,下列命題中正確的是(  ).
A.若mα,αβn,則mn
B.若mαmn,則nα
C.若mα,nβ,αβ,則mn
D.若αβ,αβn,mn,則mβ

查看答案和解析>>

同步練習(xí)冊(cè)答案