• <small id="8dun0"></small>
    直三棱柱ABC-A1B1C1的底面為等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分別是BC,AA1的中點.

    求(1)異面直線EF和A1B所成的角.
    (2)三棱錐A-EFC的體積.
    (1) 30°   (2)
    (1)取AB的中點D,連DE,DF,則DF∥A1B,
    ∴∠DFE(或其補角)即為所求.
    由題意易知,DF=,DE=1,AE=,
    由DE⊥AB,DE⊥AA1得DE⊥平面ABB1A1,
    ∴DE⊥DF,即△EDF為直角三角形,
    ∴tan∠DFE===,∴∠DFE=30°,
    即異面直線EF和A1B所成的角為30°.
    (2)VA-EFC=VF-AEC=·S△AEC·FA=××××=.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    如圖,三棱柱中,平面,,.以
    ,為鄰邊作平行四邊形,連接

    (1)求證:∥平面 ;
    (2)求直線與平面所成角的正弦值;
    (3)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若
    不存在,說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    在圓錐中,已知,的直徑,點在底面圓周上,且,的中點.

    (1)證明:平面;
    (2)求點到面的距離.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    如圖四棱錐中,底面是平行四邊形,平面的中點,.

    (1)試判斷直線與平面的位置關(guān)系,并予以證明;
    (2)若四棱錐體積為  ,,求證:平面.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

    設(shè)是兩條不同的直線, 是兩個不同的平面,則下列命題正確的是(    )
    A.若,則B.若,則
    C.若,則D.若,則

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

    已知直線和平面,且,則的位置關(guān)系是       .

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

    如圖,AB為圓O的直徑,點C在圓周上(異于點A,B),直線PA垂直于圓O所在的平面,點M為線段PB的中點.有以下四個命題:

    PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.
    其中正確的命題是________(填上所有正確命題的序號).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

    設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,假命題是________.
    ①如果α⊥β,那么α內(nèi)一定存在直線平行于β
    ②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
    ③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
    ④如果α⊥β,l與α,β都相交,那么l與α,β所成的角互余

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

    是兩個不重合的平面,在下列條件中,可判定的是(  )
    A.,都與平面垂直
    B.內(nèi)不共線的三點到的距離相等
    C.內(nèi)的兩條直線且,
    D.,是兩條異面直線且,,

    查看答案和解析>>

    同步練習(xí)冊答案