在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則;類比此性質(zhì),如圖,在四面體P—ABC中,若PA,PB,PC兩兩垂直,底面ABC上的高為h,則h與PA, PB, PC有關(guān)系式:                    
解:∵在平面上的性質(zhì),若Rt△ABC的斜邊AB上的高為h,則有 我們類比到空間中,可以類比推斷出:
在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,有:
故答案為:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于 大前提
 小前提
所以 結(jié)論
以上推理過程中的錯(cuò)誤為(   )
A.大前提B.小前提C.結(jié)論D.無錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推廣到第個(gè)等式為  _.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下圖是選修1-2第二章“推理與證明”的知識結(jié)構(gòu)圖,如果要加入“綜合法”,則應(yīng)該放在(  )
 
A.“合情推理”的下位B.“演繹推理”的下位
C.“直接證明”的下位D.“間接證明”的下位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點(diǎn)或用小石子來表示數(shù),按照點(diǎn)或小石子能排列的形狀對數(shù)進(jìn)行分類,如圖1中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,……,若按此規(guī)律繼續(xù)下去,則 ,若,則 

1         5             12                22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論錯(cuò)誤的是
A.“由猜想”是歸納推理
B.合情推理的結(jié)論一定正確
C.“由圓的性質(zhì)類比出球的有關(guān)性質(zhì)”是類比推理
D.“三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形的內(nèi)角和是(n-2)·180°”是歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),經(jīng)計(jì)算得
觀察上式結(jié)果,可推測出一般結(jié)論            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知    均為正實(shí)
數(shù),類比以上等式,可推測的值,則          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.?dāng)?shù)列{}, =,+(n,則數(shù)列{}的通項(xiàng)公式為   

查看答案和解析>>

同步練習(xí)冊答案