如圖3,坐標(biāo)紙上的每個(gè)單元格的邊長為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別為對(duì)應(yīng)數(shù)列的前12項(xiàng)(如下表所示),按如此規(guī)律下去,則  
 
從圖表可知,等,這個(gè)數(shù)列的規(guī)律是奇數(shù)項(xiàng)為:,偶數(shù)項(xiàng)為:
,所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

ABCD-A1B1C1D1單位正方體,黑白兩個(gè)螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”。白螞蟻爬地的路線是AA1→A1D1→……,黑螞蟻爬行的路線是AB→BB1→……,它們都遵循如下規(guī)則:所爬行的第與第段所在直線必須是異面直線(其中是自然數(shù))。設(shè)白,黑螞蟻都走完2011段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑,白兩螞蟻的距離是(   )
A.1B.C.D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)等比數(shù)列中,已知
1)求數(shù)列的通項(xiàng)
2)若等差數(shù)列,求數(shù)列前n項(xiàng)和,并求最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令bn=(),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表

 
   
     
………………………
記表中的第一列數(shù)構(gòu)成的數(shù)列為為數(shù)列的前項(xiàng)和,且滿足
(1)證明:;
(2)求數(shù)列的通項(xiàng)公式;
(3)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)時(shí),求上表中第行所有項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題9分)給出下面的數(shù)表序列:
表1
表2
表3

1
1   3
1   3   5
 
 
4
4   8
 
 
 
12
 
   其中表行,第1行的個(gè)數(shù)是1,3,5,…,,從第2行起,每行中的每個(gè)數(shù)都等于它肩上的兩數(shù)之和。
(1)寫出表4,驗(yàn)證表4各行中數(shù)的平均數(shù)按從上到下的順序構(gòu)成等比數(shù)列,并將結(jié)論推廣到表(不要求證明)
(2)每個(gè)數(shù)表中最后一行都只有一個(gè)數(shù),它們構(gòu)成數(shù)列1,4,12,…,記此數(shù)列為,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分14分)已知等比數(shù)列的公比為,首項(xiàng)為,其前項(xiàng)的和為.?dāng)?shù)列的前項(xiàng)的和為, 數(shù)列的前項(xiàng)的和為
(Ⅰ)若,,求的通項(xiàng)公式;(Ⅱ)①當(dāng)為奇數(shù)時(shí),比較的大; ②當(dāng)為偶數(shù)時(shí),若,問是否存在常數(shù)(與n無關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是從這三個(gè)整數(shù)中取值的數(shù)列,若,且,則中數(shù)字0的個(gè)為   ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有下列數(shù)組成一排:
,,……
如果把上述數(shù)組中的括號(hào)都去掉會(huì)形成一個(gè)數(shù)列:
,,,,,……則此數(shù)列中的2011項(xiàng)是           

查看答案和解析>>

同步練習(xí)冊(cè)答案