【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
【答案】C
【解析】解:y=loga(x+1)+1在[0,+∞)遞減,則0<a<1, 函數(shù)f(x)在R上單調(diào)遞減,則:
;
解得, ;
由圖象可知,在[0,+∞)上,|f(x)|=2﹣x有且僅有一個解,
故在(﹣∞,0)上,|f(x)|=2﹣x同樣有且僅有一個解,
當3a>2即a> 時,聯(lián)立|x2+(4a﹣3)x+3a|=2﹣x,
則△=(4a﹣2)2﹣4(3a﹣2)=0,
解得a= 或1(舍去),
當1≤3a≤2時,由圖象可知,符合條件,
綜上:a的取值范圍為[ , ]∪{ },
故選:C.
利用函數(shù)是減函數(shù),根據(jù)對數(shù)的圖象和性質(zhì)判斷出a的大致范圍,再根據(jù)f(x)為減函數(shù),得到不等式組,利用函數(shù)的圖象,方程的解的個數(shù),推出a的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )
A. 或B. 或
C. 或D. 或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且 +…+ =2.則當a2016﹣4a1取得最小值時,a1的值為= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強的線性相關(guān)關(guān)系,試求關(guān)于的回歸直線方程;
(2)若政府不調(diào)控,按照3月份至7月份房價的變化趨勢預(yù)測12月份該市新建住宅的銷售均價.
參考數(shù)據(jù):,,;
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某輪胎集團有限公司生產(chǎn)的輪胎的寬度 (單位: )服從正態(tài)分布,公司規(guī)定:輪胎寬度不在內(nèi)將被退回生產(chǎn)部重新生產(chǎn).
(1)求此輪胎不被退回的概率(結(jié)果精確到);
(2)現(xiàn)在該公司有一批輪胎需要進行初步質(zhì)檢,檢驗方案是從這批輪胎中任取件作檢驗,這件產(chǎn)品中至少有件不被退回生產(chǎn)部,則稱這批輪胎初步質(zhì)檢合格.
()求這批輪胎初步質(zhì)檢合格的概率;
()若質(zhì)檢部連續(xù)質(zhì)檢了批輪胎,記為這批輪胎中初步質(zhì)檢合格的批數(shù),求的數(shù)學期望.
附:若,則 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項和,證明: ≤Tn<1(n∈N+).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型商場為了了解顧客的購物信息,隨機在商場收集了位顧客的購物總額(單位元),將數(shù)據(jù)按照 , 分成組,制成了如下圖所示的頻率分布直方圖:
該商場每日大約有名顧客,為了增加商場銷售總額,近期對一次性購物不低于元的顧客發(fā)放紀念品.
(1)求頻率分布直方圖中的值,并估計每日應(yīng)準備紀念品的數(shù)量;
(2)若每日按分層抽樣的方法從購物總額在三組對應(yīng)的顧客中抽取名顧客,這名顧客中再隨機抽取兩名超級顧客,每人獎勵一個超級禮包,求獲得超級禮包的兩人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com