如圖所示,AB為⊙O的直徑,AE平分∠BAC交⊙O于E點(diǎn),過(guò)E作⊙O的切線(xiàn)交AC于點(diǎn)D,試判斷△AED的形狀,并說(shuō)明理由.
見(jiàn)解析

解 △AED為直角三角形,理由如下:
連接OE,∵ED為⊙O切線(xiàn),

∴OE⊥ED.
∵OA=OE,
∴∠1=∠OEA.
又∵∠1=∠2,
∴∠2=∠OEA,
∴OE∥AC,∴AC⊥DE,
∴△AED為直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,梯形ABCD內(nèi)接于⊙O,ADBC,過(guò)點(diǎn)C作⊙O的切線(xiàn),交BD的延長(zhǎng)線(xiàn)于點(diǎn)P,交AD的延長(zhǎng)線(xiàn)于點(diǎn)E.

(1)求證:AB2DE·BC;
(2)若BD=9,AB=6,BC=9,求切線(xiàn)PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點(diǎn)E,F(xiàn)分別為線(xiàn)段AB,AD的中點(diǎn),則EF=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在△ABC中,AD⊥BC于D,下列條件:

(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3);
(4)AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有
A.3個(gè)    B.2個(gè)     C.1個(gè)    D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,PC切⊙O于A,PO的延長(zhǎng)線(xiàn)交⊙O于B,BC切⊙O于B,若AC∶CP=1∶2,則PO∶OB等于
A.2∶1B.1∶1
C.1∶2D.1∶4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,經(jīng)過(guò)⊙O上的點(diǎn)A的切線(xiàn)和弦BC的延長(zhǎng)線(xiàn)相交于點(diǎn)P,若∠CAP=40°,∠ACP=100°,則∠BAC所對(duì)的弧的度數(shù)為
A.40°B.100°C.120°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中正確的個(gè)數(shù)是
①垂直于半徑的直線(xiàn)是圓的切線(xiàn);
②過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必過(guò)切點(diǎn);
③過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必過(guò)圓心;
④過(guò)半徑的一端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);
⑤同心圓內(nèi)大圓的弦AB是小圓的切線(xiàn),則切點(diǎn)是AB的中點(diǎn).
A.2B.3 C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若BE和CF是△ABC的邊AC和AB邊上的高,則________四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,a-b=1,tan A=,其中a、b分別是∠A和∠B的對(duì)邊,則斜邊上的高h(yuǎn)=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案