【題目】設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù)存在兩個極值點,
①求實數(shù)的范圍;
②證明:.
【答案】(1);(2),證明詳見解析.
【解析】
試題本題主要考查導(dǎo)數(shù)的運算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值和最值、利用導(dǎo)數(shù)求曲線的切線方程等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,將代入,對求導(dǎo),切點的縱坐標(biāo)為,斜率為,利用點斜式寫出切線方程;第二問,對求導(dǎo),令,將函數(shù)存在兩個極值點,轉(zhuǎn)化為方程有兩個不同的正根,利用二次函數(shù)的圖象分析列出不等式,解出a的取值范圍;對求導(dǎo),求出的根,得到的表達式,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出最小值,即證明了結(jié)論.
試題解析:(1)當(dāng)a=2時,,,
則,,所以切線方程為.4分
(2)(),令,得,
①函數(shù)有兩個極值點等價于方程有兩個不同的正根,
設(shè),所以,
所以函數(shù)有兩個極值點,,則,
②由,得,則,,,
在區(qū)間上遞減,,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線.給出下列結(jié)論:
①曲線關(guān)于原點對稱;
②曲線上任意一點到原點的距離不小于1;
③曲線只經(jīng)過個整點(即橫縱坐標(biāo)均為整數(shù)的點).
其中,所有正確結(jié)論的序號是( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
(Ⅰ)過點的直線被圓截得的弦長為8,求直線的方程;
(Ⅱ)當(dāng)取何值時,直線與圓相交的弦長最短,并求出最短弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上動點到點距離比它到直線距離少1.
(1)求動點的軌跡方程;
(2)記動點的軌跡為曲線,過點作直線與曲線交于兩點,點,延長,,與曲線交于,兩點,若直線,的斜率分別為,,試探究是否為定值?若為定值,請求出定值,若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,有下列結(jié)論:
①他第3次擊中目標(biāo)的概率是0.9;
②他恰好擊中目標(biāo)3次的概率是;
③他至少擊中目標(biāo)1次的概率是;
④他至多擊中目標(biāo)1次的概率是
其中正確結(jié)論的序號是( )
A.①②③B.①③
C.①④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對任意恒成立,求實數(shù)的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體中,為的中點,為上任意一點,,為上兩動點,且的長為定值,則下面四個值中不是定值的是( )
A.點到平面的距離B.直線與平面所成的角
C.三棱錐的體積D.二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com