(本小題滿分12分)

某企業(yè)生產(chǎn)AB兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬元).

(1)分別將AB兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).

①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?

②問:如果你是廠長(zhǎng),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬元?

 

【答案】

(1) f(x)=0.25x (x≥0),g(x)=2  (x≥0).

(2)總利潤(rùn)y=8.25(萬元),當(dāng)A、B兩種產(chǎn)品分別投入2萬元、16萬元時(shí),可使該企業(yè)獲得最大利潤(rùn)8.5萬元.

【解析】

試題分析:(1)設(shè)甲、乙兩種產(chǎn)品分別投資x萬元(x≥0),所獲利潤(rùn)分別為f (x)、g(x)萬元,

由題意可設(shè)f(x)=k1x,g(x)=k2

∴根據(jù)圖象可解得f(x)=0.25x (x≥0),

g(x)=2  (x≥0).

(2)①由(1)得f(9)=2.25,g(9)=2 =6,

∴總利潤(rùn)y=8.25(萬元).

②設(shè)B產(chǎn)品投入x萬元,A產(chǎn)品投入(18-x)萬元,該企業(yè)可獲總利潤(rùn)為y萬元,

y (18-x)+2 ,0≤x≤18.

t,t∈[0,3],

y (-t2+8t+18)=- (t-4)2

∴當(dāng)t=4時(shí),ymax=8.5,此時(shí)x=16,18-x=2.

∴當(dāng)A、B兩種產(chǎn)品分別投入2萬元、16萬元時(shí),可使該企業(yè)獲得最大利潤(rùn)8.5萬元.

考點(diǎn):函數(shù)模型的運(yùn)用

點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)數(shù)函數(shù)解析式的求解,能將實(shí)際問題轉(zhuǎn)換為代數(shù)式,并分析其性質(zhì),屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案