【題目】已知函數(shù).
(1)若時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上恰有2個零點,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】分析:(1)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)分三種情況討論的范圍,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點存在定理與函數(shù)圖象,可篩選出函數(shù)在區(qū)間上恰有2個零點的實數(shù)的取值范圍.
詳解:(1)
當(dāng)時,,此時在單調(diào)遞增;
當(dāng)時,
①當(dāng)時,,恒成立,,此時在單調(diào)遞增;
②當(dāng)時,令
在和上單調(diào)遞增;在上單調(diào)遞減;
綜上:當(dāng)時,在單調(diào)遞增;
當(dāng)時,在和上單調(diào)遞增;
在上單調(diào)遞減;
(2)當(dāng)時,由(1)知,在單調(diào)遞增,,
此時在區(qū)間上有一個零點,不符;
當(dāng)時,,在單調(diào)遞增;,
此時在區(qū)間上有一個零點,不符;
當(dāng)時,要使在內(nèi)恰有兩個零點,必須滿足
在區(qū)間上恰有兩個零點時,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在定義域上不單調(diào),求的取值范圍;
(2)設(shè),,分別是的極大值和極小值,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍;
(2)已知正數(shù)滿足:存在,使得成立.試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在區(qū)間上的奇函數(shù),其圖象如圖所示;令,則下列關(guān)于函數(shù)的敘述正確的是( )
A.若,則函數(shù)的圖象關(guān)于原點對稱
B.若,,則方程有大于的實根
C.若,,則函數(shù)的圖象關(guān)于軸對稱
D.若,,則方程有三個實根
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的最小值為-1,,數(shù)列滿足,,記,表示不超過的最大整數(shù).證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)極值點的個數(shù),并說明理由;
(2)若, 恒成立,求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com