精英家教網 > 高中數學 > 題目詳情

【題目】某廣場有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環(huán)境標志,小李,小王設計的底座形狀分別為 ,經測量米, 米, 米,

(I)求的長度;

(Ⅱ)若環(huán)境標志的底座每平方米造價為元,不考慮其他因素,小李,小王誰的設計建造費用最低(請說明理由),最低造價為多少?(

【答案】(I)米.(Ⅱ)86600(元).

【解析】試題分析:由實際問題轉化為數學問題,即為解三角形,首先利用兩三角形中的余弦定理得到關于AB邊的等式關系,解方程得到邊長,進而得到角D的大小,利用三角形面積公式分解計算出兩三角形的面積,得到取得最小造價的方案

試題解析:()在ABC中,由余弦定理得2

中,由余弦定理得, 4

解得6

)小李設計使建造費用最低, 7

理由為:

故選擇的形狀建造環(huán)境標志費用最低. 9

邊三角形, 10

12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中, , , 中點,將沿折起,使得

)求證:平面平面

)若的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角坐標系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點C,半徑為,且點P在圖中陰影部分(包括邊界)運動.,其中,則 的取值范圍是(

A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為對南康區(qū)和于都縣兩區(qū)縣某次聯考成績進行分析,隨機抽查了兩地一共10000名考生的成績,根據所得數據畫了如下的樣本頻率分布直方圖.

(1)求成績在的頻率;

(2)根據頻率分布直方圖算出樣本數據平均數;

(3)為了分析成績與班級、學校等方面的關系,必須按成績再從這10000人中用分層抽樣方法抽出20人作進一步分析,則成績在的這段應抽多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的焦點為,準線為,三個點, 中恰有兩個點在上.

(1)求拋物線的標準方程;

(2)過的直線交, 兩點,點上任意一點,證明:直線, 的斜率成等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知圓Cy軸相切于點T(0,2),與x軸的正半軸交于兩點 (在點的左側),且.

(1)求圓C的方程;(2)過點任作一直線與圓O 相交于兩點,連接,求證: 定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查,下面是根據調查結果繪制的學生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學生稱為“書蟲”,低于60 min的學生稱為“懶蟲”,

(1)求x的值并估計全校3 000名學生中“書蟲”大概有多少名學生?(將頻率視為概率)

(2)根據已知條件完成下面2×2的列聯表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“書蟲”與性別有關:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某地區(qū)某種農產品的年產量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農產品的年產量和價格統(tǒng)計如下表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

已知具有線性相關關系.

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)若每噸該農產品的成本為2千元,假設該農產品可全部賣出,預測當年產量為多少噸時,年利潤取到最大值?(保留一位小數)

參考數據及公式: , ,

, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點, 且為坐標原點)?若存在,寫出該圓的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案